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Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute real-time
monitoring and surveillance data from large-scale information systems and cyber-physical systems. Detect-
ing system anomalies thus attracts significant amount of interest in many fields such as security, fault

management, and industrial optimization. Recently, invariant network has shown to be a powerful way in
characterizing complex system behaviours. In the invariant network, a node represents a system component
and an edge indicates a stable, significant interaction between two components. Structures and evolutions
of the invariance network, in particular the vanishing correlations, can shed important light on locating
causal anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with
the invariant network often use the percentage of vanishing correlations to rank possible casual components,
which have several limitations: 1) fault propagation in the network is ignored; 2) the root casual anomalies
may not always be the nodes with a high-percentage of vanishing correlations; 3) temporal patterns of van-
ishing correlations are not exploited for robust detection; 4) prior knowledges on anomalous nodes are not
exploited for (semi-)supervised detection. To address these limitations, in this paper we propose a network
diffusion based framework to identify significant causal anomalies and rank them. Our approach can effec-
tively model fault propagation over the entire invariant network, and can perform joint inference on both
the structural, and the time-evolving broken invariance patterns. As a result, it can locate high-confidence
anomalies that are truly responsible for the vanishing correlations, and can compensate for unstructured
measurement noise in the system. Moreover, when the prior knowledges on the anomalous status of some
nodes are available at certain time points, our approach is able to leverage them to further enhance the
anomaly inference accuracy. When the prior knowledges are noisy, our approach also automatically learns
reliable information and reduces impacts from noises. By performing extensive experiments on synthetic
datasets, bank information system datasets, and coal plant cyber-physical system datasets, we demonstrate
the effectiveness of our approach.
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1. INTRODUCTION

With the rapid advances in networking, computers, and hardware, we are facing an
explosive growth of complexity in networked applications and information services.
These large-scale, often distributed, information systems usually consist of a great va-
riety of components that work together in a highly complex and coordinated manner.
One example is the Cyber-Physical System (CPS) which is typically equipped with a
large number of networked sensors that keep recording the running status of the local
components; another example is the large scale Information Systems such as the cloud
computing facilities in Google, Yahoo! and Amazon, whose composition includes thou-
sands of components that vary from operating systems, application softwares, servers,
to storage, networking devices, etc.

A central task in running these large scale distributed systems is to automatically
monitor the system status, detect anomalies, and diagnose system fault, so as to guar-
antee stable and high-quality services or outputs. Significant research efforts have
been devoted to this topic in the literatures. For instance, Gertler et al. [Gertler 1998]
proposed to detect anomalies by examining monitoring data of individual component
with a thresholding scheme. However, it can be quite difficult to learn a universal and
reliable threshold in practice, due to the dynamic and complex nature of information
systems. More effective and recent approaches typically start with building system
profiles, and then detect anomalies via analyzing patterns in these profiles [Chandola
et al. 2009; Jiang et al. 2006a]. The system profile is usually extracted from histori-
cal time series data collected by monitoring different system components, such as the
flow intensity of software log files, the system audit events and the network traffic
statistics, and sometimes sensory measurements in physical systems.

The invariant model is a successful example [Jiang et al. 2006a; 2006b] for large-
scale system management. It focuses on discovering stable, significant dependencies
between pairs of system components that are monitored through time series record-
ings, so as to profile the system status and perform subsequent reasoning. A strong
dependency between a pair of components is called invariant (correlation) relation-
ship. By combining the invariants learned from all monitoring components, a global
system dependency profile can be obtained. The significant practical value of such an
invariant profile is that it provides important clues on abnormal system behaviors
and in particular the source of anomalies, by checking whether existing invariants are
broken. Fig. 1 illustrates one example of the invariant network and two snapshots of
broken invariants at time t1 and t2, respectively. Each node represents the observation
from a monitoring component. The green line signifies an invariant link between two
components, and a red line denotes broken invariant (i.e., vanishing correlation). The
network including all the broken invariants at given time point is referred to as the
broken network.

Although the broken invariants provide valuable information of the system status,
how to locate true, causal anomalies can still be a challenging task due to the following
reasons. First, system faults are seldom isolated. Instead, starting from the root loca-
tion/component, anomalous behavior will propagate to neighboring components [Jiang
et al. 2006a], and different types of system faults can trigger diverse propagation pat-
terns. Second, monitoring data often contains a lot of noises due to the fluctuation of
complex operation environments.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2016.



Ranking Causal Anomalies via Temporal and Dynamical Analysis on Vanishing Correlations 39:3

i 

j 

a 
b 

v 

Invariant link 

Broken link 

c 

d e 

f 
g 

g 

h 

(a) t1

i 

j 

a 
b 

v 

c 

d e 

f 
g 

g 

Invariant link 

Broken link 

h 

(b) t2

Fig. 1. Invariant network and vanishing correlations(red edges).

Recently, several ranking algorithms were developed to diagnose the system failure
based on the percentage of broken invariant edges associated with the nodes, such as
the egonet based method proposed by Ge et al. [Ge et al. 2014], and the loopy belief
propagation (LBP) based method proposed by Tao et al. [Tao et al. 2014]. Despite the
success in practical applications, existing methods still have certain limitations. First,
they do not take into account the global structure of the invariant network, neither
how the root anomaly/fault propagates in such a network. Second, the ranking strate-
gies rely heavily on the percentage of broken edges connected to a node. For example,
the mRank algorithm [Ge et al. 2014] calculated the anomaly score of a given node
using the ratio of broken edges within the egonet 1 of the node. The LBP-based method
[Tao et al. 2014] used the ratio of broken edges as the prior probability of abnormal
state for each node. We argue that, the percentage of broken edges may not serve as
a good evidence of the causal anomaly. This is because, although one broken edge can
indicate that one (or both) of related nodes is abnormal, lack of a broken edge does
not necessary indicate that related nodes are problem free. Instead, it is possible that
the correlation is still there when two nodes become abnormal simultaneously [Jiang
et al. 2006a]. Therefore the percentage of broken edges could give false evidences. For
example, in Fig. 1, the causal anomaly is node i©. The percentage of broken edges for
node i© is 2/3, which is smaller than that of node h© (which is equal to 1). Since there
exists a clear evidence of fault propagation on node i©, an ideal algorithm should rank
i© higher than h©. Third, existing methods usually consider static broken network

instead of multiple broken networks at successive time points together. While we be-
lieve that, jointly analyzing temporal broken networks can help resolve ambiguity and
achieve a denoising effect. This is because, the root casual anomalies usually remain
unchanged within a short time period, even though the fault may keep prorogating
in the invariant network. As an example shown in Fig. 1, it would be easier to detect
the causal anomaly if we jointly consider the broken networks at two successive time
points together.

Furthermore, in some applications, system experts may have prior knowledges on
the anomalous status of some components (i.e., nodes) at certain time points, such as
a numeric value indicating the bias of the monitoring data of a component from its
predicted normal values [Chen et al. 2008]. Thus it is highly desirable to incorporate
them to guide the causal anomaly inferences. However, to our best knowledge, none of
these existing approaches can handle such information.

To address the limitations of existing methods, we propose several network diffusion
based algorithms for ranking causal anomalies. Our contributions are summarized as
follows.

1An egonet is the induced 1-step subgraph for each node.
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(1) We employ the network diffusion process to model propagation of causal anoma-
lies and use propagated anomaly scores to reconstruct the vanishing correlations.
By minimizing the reconstruction error, the proposed methods simultaneously con-
sider the whole invariant network structure and the potential fault propagation.
We also provide rigid theoretical analysis on the properties of our methods.

(2) We further develop efficient algorithms which reduce the time complexity from
O(n3) to O(n2), where n is the number of nodes in the invariant network. This
makes it feasible to quickly locate root cause anomalies in large-scale systems.

(3) We employ effective normalization strategy on the ranking scores, which can re-
duce the influence of extreme values or outliers without having to explicitly remove
them from the data.

(4) We develop a smoothing algorithm that enables users to jointly consider dynamic
and time-evolving broken network, and thus obtain better ranking results.

(5) We extend our algorithms to semi-supervised settings to leverage the prior knowl-
edges on the anomalous degrees of nodes at certain time points. The prior knowl-
edges are allowed to partially cover the nodes in the invariant network, as practi-
cally suggested by the limitation of such information.

(6) We also improve our semi-supervised algorithms to allow automatic identification
of noisy prior knowledges. By assigning small weights to nodes with false anoma-
lous degrees, our algorithms can reduce the negative impacts of prior knowledges
and obtain robust performance gain.

(7) We evaluate the proposed methods on both synthetic datasets and two real-life
datasets, including the bank information system and the coal plant cyber-physical
system datasets. The experimental results demonstrate the effectiveness of the
proposed methods.

2. BACKGROUND AND PROBLEM DEFINITION

In this section, we first introduce the technique of the invariant model [Jiang et al.
2006a] and then define our problem.

2.1. System Invariant and Vanishing Correlations

The invariant model is used to uncover significant pairwise relations among massive
set of time series. It is based on the AutoRegressive eXogenous (ARX) model [Lennart
1999] with time delay. Let x(t) and y(t) be a pair of time series under consideration,
where t is the time index, and let n and m be the degrees of the ARX model, with a
delay factor k. Let ŷ(t; θ) be the prediction of y(t) using the ARX model parametarized
by θ, which can then be written as

ŷ(t; θ) = a1y(t− 1) + · · ·+ any(t− n) (1)

+ b0x(t− k) + · · ·+ bmx(t− k −m) + d

=ϕ(t)⊤θ, (2)

where θ = [a1, . . . , an, b0, . . . , bm, d]⊤ ∈ R
n+m+2, ϕ(t) = [y(t − 1), . . . , y(t − n), x(t −

k), . . . , x(t − k − m), 1]⊤ ∈ R
n+m+2. For a given setting of (n,m, k), the parameter θ

can be estimated with observed time points t = 1, . . . , N in the training data, via least-
square fitting. In real-world applications such as anomaly detection in physical sys-
tems, 0 ≤ n,m, k ≤ 2 is a popular choice [Chen et al. 2008; Jiang et al. 2006a]. We can
define the “goodness of fit” (or fitness score) of an ARX model as

F (θ) = 1−

√√√√
∑N

t=1 |y(t)− ŷ(t; θ)|2
∑N

t=1 |y(t)− ȳ|2
, (3)
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Table I. Summary of notations

Symbol Definition
n the number of nodes in the invariant network

c, λ, τ the parameters 0 < c < 1, τ > 0, λ > 0
σ(·) the softmax function
Gl the invariant network
Gb the broken network for Gl

A (Ã) ∈ R
n×n the (normalized) adjacency matrix of Gl

P (P̃) ∈ R
n×n the (normalized) adjacency matrix of Gb

M ∈ R
n×n the logical matrix of Gl

d(i) the degree of the ith node in network Gl

D ∈ R
n×n the degree matrix: D = diag(d(i), ..., d(n))

r ∈ R
n×1 the prorogated anomaly score vector

e ∈ R
n×1 the ranking vector of causal anomalies

RCA the basic ranking causal anomalies algorithm
R-RCA the relaxed RCA algorithm

RCA-SOFT the RCA with softmax normalization
R-RCA-SOFT the relaxed RCA with softmax normalization

T-RCA the RCA with temporal smoothing
T-R-RCA the R-RCA with temporal smoothing

T-RCA-SOFT the RCA-SOFT with temporal smoothing
T-R-RCA-SOFT the R-RCA-SOFT with temporal smoothing

RCA-SEMI the RCA in semi-supervised setting
W-RCA-SEMI the semi-supervised RCA with weight learning

where ȳ is the mean of the time series y(t). A higher value of F (θ) indicates a better
fitting of the model. An invariant (correlation) is declared on a pair of time series x and
y if the fitness score of the ARX model is larger than a pre-defined threshold. A network
including all the invariant links is referred to as the invariant network. Construction
of the invariant network is referred to as the model training. The model θ will then be
applied on the time series x and y in the testing phase to track vanishing correlations.

To track vanishing correlations, we can use the techniques developed in [Chen et al.
2008; Jiang et al. 2007]. At each time point, we compute the (normalized) residual R(t)
between the measurement y(t) and its estimate ŷ(t; θ) by

R(t) =
|y(t)− ŷ(t; θ)|

εmax
, (4)

where εmax is the maximum training error εmax = max1≤t≤N

|y(t)− ŷ(t; θ)|. If the residual exceeds a prefixed threshold, then we declare the invari-
ant as “broken”, i.e., the correlation between the two time series vanishes. The network
including all the broken edges at given time point and all nodes in the invariant net-
work is referred to as the broken network.

2.2. Problem Definition

Let Gl be the invariant network with n nodes. Let Gb be the broken network for Gl.
We use two symmetric matrices A ∈ R

n×n, P ∈ R
n×n to denote the adjacency matrix

of network Gl and Gb, respectively. These two matrices can be obtained as discussed
in Section 2.1. The two matrices can be binary or continuous. For binary case of A, 1
is used to denote that the correlation exists between two time series, and 0 denotes
the lack of correlation; while for P, 1 is used to denote that the correlation is broken
(vanishing), and 0 otherwise. For the continuous case, the fitness score F (θ) (3) and
the residual R(t) (4) can be used to fill the two matrices, respectively.

Our main goal is to detect the abnormal nodes in Gl that are most responsible for
causing the broken edges in Gb. In this sense, we call such nodes “causal anomalies”.
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Accurate detection of causal anomalous nodes will be extremely useful for examina-
tion, debugging and repair of system failures.

3. RANKING CAUSAL ANOMALIES

In this section, we present the algorithm of Ranking Causal Anomalies (RCA), which
takes into account both the fault propagation and fitting of broken invariants simulta-
neously.

3.1. Fault Propagation

We consider a very practical scenario of fault propagation, namely anomalous sys-
tem status can always be traced back to a set of root cause anomaly nodes, or causal
anomalies, as initial seeds. As the time passes, these root cause anomalies will then
propagate along the invariant network, most probably towards their neighbors via
paths identified by the invariant links in Gl. To explicitly model this spreading process
on the network, we have employed the label propagation technique [Kim et al. 2008;
Tong et al. 2006; Zhou et al. 2004]. Suppose that the (unknown) root cause anomalies
are denoted by the indicator vector e, whose entries ei’s (1 ≤ i ≤ n) indicate whether
the ith node is the casual anomaly (ei = 1) or not (ei = 0). At the end of propagation,
the system status is represented by the anomaly score vector r, whose entries tell us
how severe each node of the network has been impaired. The propagation from e to r
can be modeled by the following optimization problem

min
r≥0

c

n∑

i,j=1

Aij ||
1√
Dii

ri −
1√
Djj

rj ||2 + (1− c)

n∑

i=1

||ri − ei||2,

where D ∈ R
n×n is the degree matrix of A, c ∈ (0, 1) is the regularization parameter,

r is the anomaly score vector after the propagation of the initial faults in e. We can
re-write the above problem as

min
r≥0

cr⊤(In − Ã)r+ (1 − c)||r− e||2F , (5)

where In is the identity matrix, Ã = D−1/2AD−1/2 is the degree-normalized version
of A. Similarly we will use P̃ as the degree-normalized P in the sequel. The first term
in Eq. (5) is the smoothness constraint [Zhou et al. 2004], meaning that a good ranking
function should assign similar values to nearby nodes in the network. The second term
is the fitting constraint, which means that the final status should be close to the initial
configuration. The trade-off between these two competing constraints is controlled by a
positive parameter c: a small c encourages a sufficient propagation, and a big c actually
suppresses the propagation. The optimal solution of problem (5) is [Zhou et al. 2004]

r = (1− c)(In − cÃ)−1e, (6)

which establishes an explicit, closed-form solution between the initial configuration e
and the final status r through propagation.

To encode the information of the broken network, we propose to use r to reconstruct
the broken network Gb. The intuition is illustrated in Fig. 2. If there exists a broken
link in Gb, e.g., P̃ij is large, then ideally at least one of the nodes i and j should be
abnormal, or equivalently, either ri or rj should be large. Thus, we can use the product

of ri and rj to reconstruct the value of P̃ij . In Section 5, we’ll further discuss how to
normalize them to avoid extreme values. Then, the loss of reconstructing the broken
link P̃ij can be calculated by (ri · rj − P̃ij)

2. The reconstruction error of the whole

broken network is then ||(rr⊤) ◦M − P̃||2F . Here, ◦ is element-wise operator, and M
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Fig. 2. Reconstruction of the broken invariant network using anomaly score vector r.

is the logical matrix of the invariant network Gl (1 with edge, 0 without edge). Let
B = (1− c)(In − cÃ)−1, by substituting r we obtain the following objective function.

min
ei∈{0,1},1≤i≤n

||(Bee⊤B⊤) ◦M − P̃||2F (7)

Considering that the integer programming in problem (7) is NP-hard, we relax it by
using the ℓ1 penalty on e with parameter τ to control the number of non-zero entries
in e [Tibshirani 1996]. Then we reach the following objective function.

min
e≥0

||(Bee⊤B⊤) ◦M− P̃||2F + τ ||e||1 (8)

3.2. Learning Algorithm

In this section, we present an iterative multiplicative updating algorithm to optimize
the objective function in (8). The objective function is invariant under these updates if
and only if e are at a stationary point [Lee and Seung 2001]. The solution is presented
in the following theorem, which is derived from the Karush-Kuhn-Tucker (KKT) com-
plementarity condition [Boyd and Vandenberghe 2004]. Detailed theoretical analysis
of the optimization procedure will be presented in the next section.

THEOREM 1. Updating e according to Eq. (9) will monotonically decrease the ob-
jective function in Eq. (8) until convergence.

e← e ◦
{

4B⊤(P̃ ◦M)⊤Be

4B⊤ [M ◦ (Bee⊤B⊤)]Be+ τ1n

} 1
4

, (9)

where ◦, [·]
[·] and (·) 1

4 are element-wise operators.

Based on Theorem 1, we develop the iterative multiplicative updating algorithm for
optimization and summarize it in Alg. 1. We refer to this ranking algorithm as RCA.

3.3. Theoretical Analysis

3.3.1. Derivation. We derive the solution to problem (9) following the constrained op-
timization theory [Boyd and Vandenberghe 2004]. Since the objective function is not
jointly convex, we adopt an effective multiplicative updating algorithm to find a local
optimal solution. We prove Theorem 1 in the following.
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ALGORITHM 1: Ranking Causal Anomalies (RCA)

Input: Network Gl denoting the invariant network with n nodes, and is represented by an
adjacency matrix A, c is the network propagation parameter, τ is the parameter to
control the sparsity of e, P̃ is the normalized adjacency matrix of the broken network,
M is the logical matrix of Gl (1 with edge, 0 without edge)

Output: Ranking vector e

1 begin
2 for i← 1to n do
3 Dii ←

∑n
j=1

Aij ;

4 end
5 D← diag(D11, ...,Dii);

6 Ã← D
−1/2

AD
−1/2;

7 Initialize e with random values between (0,1];

8 B← (1− c)(In − cÃ)−1;
9 repeat

10 Update e by Eq. (9);
11 until convergence;
12 end

We formulate the Lagrange function for optimization L = ||(Bee⊤B⊤) ◦M − P̃||2F +

τ1⊤
n e. Obviously, B, M and P̃ are symmetric matrix. Let F = (Bee⊤B⊤) ◦M, then

∂

∂em
(F− P̃)2ij = 2(Fij − P̃ij)

∂Fij

em

= 4(Fij − P̃ij)Mij(B
⊤
miBj:e) (by symmetry)

= 4B⊤
mi(Fij − P̃ij)Mij(Be)j:

(10)

It follows that

∂||F− P̃||2
F

∂em
= 4B⊤

m:[(F− P̃) ◦M](Be), (11)

and thereby

∂||F− P̃||2F
∂e

= 4B⊤[(F− P̃) ◦M](Be). (12)

Thus, the partial derivative of Lagrange function with respect to e is:

∇eL = 4B⊤
[
(Bee⊤B⊤ − P̃) ◦M

]
Be+ τ1n, (13)

where 1n is the n× 1 vector of all ones. Using the Karush-Kuhn-Tucker (KKT) comple-
mentarity condition [Boyd and Vandenberghe 2004] for the non-negative constraint on
e, we have

∇eL ◦ e = 0 (14)

The above formula leads to the updating rule for e that is shown in Eq. (9).

3.3.2. Convergence. We use the auxiliary function approach [Lee and Seung 2001] to
prove the convergence of Eq. (9) in Theorem 1. We first introduce the definition of
auxiliary function as follows.

DEFINITION 3.1. Z(h, ĥ) is an auxiliary function for L(h) if the conditions

Z(h, ĥ) ≥ L(h) and Z(h, h) = L(h), (15)
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are satisfied for any given h, ĥ [Lee and Seung 2001].

LEMMA 3.1. If Z is an auxiliary function for L, then L is non-increasing under the
update [Lee and Seung 2001].

h(t+1) = argmin
h

Z(h, h(t)) (16)

THEOREM 2. Let L(e) denote the sum of all terms in L containing e. The following
function

Z(e, ê) = −2
∑

ij

[
B⊤(P̃ ◦M)⊤B

]
ij
êiêj

(
1 + log

eiej

êiêj

)

+
∑

i

{
B⊤

[
M ◦ (Bêê⊤B⊤)

]
Bê

}
i

e4i
ê3i

+
τ

4

∑

i

e4i + 3ê4i
ê3i

(17)

is an auxiliary function for L(e). Furthermore, it is a convex function in e and has a
global minimum.

PROOF. According to Definition 3.1, in this proof, we need to verify (1) Z(e, ê) ≥
L(e), (2) Z(e, e) = L(e) and (3) Z(e, ê) is a convex function in e, which are respectively
proved as following.

First, omitting some constants, we write L(e) as

L(e) = −2tr
(
B⊤(P̃ ◦M)⊤Bee⊤

)
+ tr

([
M ◦ (Bee⊤B⊤)

]⊤
(Bee⊤B⊤)

)
+ τ

∑

i

ei (18)

In order to prove (1) Z(e, ê) ≥ L(e), we deduce the upper bound for each term in
Eq. (18).

Using the inequality z ≥ 1 + log z, which holds for any z > 0, we have

eiej

êiêj
≥ 1 + log

eiej

êiêj

Then we can write an upper bound for the first term

− 2tr
(
B⊤(P̃ ◦M)⊤Bee⊤

)
= −2

∑

ij

[
B⊤(P̃ ◦M)⊤B

]
ij
eiej

≤ −2
∑

ij

[
B⊤(P̃ ◦M)⊤B

]
ij
êiêj

(
1 + log

eiej

êiêj

) (19)

For the second term, we can rewrite it by

tr
([

M ◦ (Bee⊤B⊤)
]⊤

(Bee⊤B⊤)
)
=

∑

xyijpq

MxyBxieiejByjBxpepeqByq
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Let ei = êisi, ej = êjsj , ep = êpsp and eq = êqsq for some non-negative values si, sj,
sp and sq, we can further rewrite it by

∑

xyijpq

MxyBxiêiêjByjBxpêpêqByqsisjspsq

≤
∑

xyijpq

MxyBxiêiêjByjBxpêpêqByq

s4i + s4j + s4p + s4q
4

=
1

4



∑

i

Qi
e4i
ê3i

+
∑

j

Qj

e4j

ê3j
+
∑

p

Qp

e4p

ê3p
+
∑

q

Qq

e4q

ê3q


 =

∑

i

Qi
e4i
ê3i

(20)

where Q = B⊤
[
M ◦ (Bêê⊤B⊤)

]
Bê. Here, the last equation is obtained by switching

indexes.
For the third term, using the fact that 2ab ≤ a2 + b2, we have

τ
∑

i

ei ≤
τ

2

∑

i

e2i + ê2i
êi

≤ τ

4

∑

i

e4i + 3ê4i
ê3i

(21)

Therefore, by collecting Eq. (19), Eq. (20) and Eq. (21), we have verified (1) Z(e, ê) ≥
L(e). Moreover, by substituting ê with e in Z(e, ê), we can directly verify (2) Z(e, e) =
L(e).

To prove (3) Z(e, ê) is a convex function in e, we need to show the Hessian matrix
∇2

e
Z(e, ê) is positive-definite. First, we derive

∂Z(e, ê)

∂ei
= −4

[
B⊤(P̃ ◦M)⊤Bê

]
i

êi

ei
+ 4

{
B⊤

[
M ◦ (Bêê⊤B⊤)

]
Bê

}
i

e3i
ê3i

+ τ
e3i
ê3i

Then the second order derivative is

∂2Z(e, ê)

∂ei∂ej
= δij

(
4
[
B⊤(P̃ ◦M)⊤Bê

]
i

êi

e2i
+ 12

{
B⊤

[
M ◦ (Bêê⊤B⊤)

]
Bê

}
i

e2i
ê3i

+ 3τ
e2i
ê3i

)

where δij is the Kronecker delta. δij = 1 if i = j; δij = 0 otherwise.
Therefore, the Hessian matrix ∇2

eZ(e, ê) is a diagonal matrix with positive diago-
nal entries. Hence, we verify (3) ∇2

e
Z(e, ê) is positive-definite and Z(e, ê) is a convex

function in e. This completes the proof.

Based on Theorem 2, we can minimize Z(e, ê) with respect to e with ê fixed. We set
∇eZ(e, ê) = 0, and get the following updating formula

e← ê ◦
{

4B⊤(P̃ ◦M)⊤Bê

4B⊤ [M ◦ (Bêê⊤B⊤)]Bê+ τ1n

} 1
4

, (22)

which is consistent with the updating formula derived from the KKT condition afore-
mentioned.

From Lemma 3.1 and Theorem 2, for each subsequent iteration of updating e, we
have L(e0) = Z(e0, e0) ≥ Z(e1, e0) ≥ Z(e1, e1) = L(e1) ≥ ... ≥ L(eIter). Thus L(e) mono-
tonically decreases. Since the objective function Eq. (8) is lower bounded by 0, the
correctness of Theorem 1 is proven.

3.3.3. Complexity Analysis. In Algorithm 1, we need to calculate the inverse of an n× n
matrix, which takes O(n3) time. In each iteration, the multiplication between two n×n
matrices is inevitable, thus the overall time complexity of Algorithm 1 is O(Iter · n3),
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where Iter is the number of iterations needed for convergence. In the following section,
we will propose an efficient algorithm that reduces the time complexity to O(Iter ·n2).

4. COMPUTATIONAL SPEED UP

In this section, we will propose an efficient algorithm that avoids the matrix inverse
calculations as well as the multiplication between two n × n matrices. The time com-
plexity can be reduced to O(Iter · n2).

We achieve the computational speed up by relaxing the objective function in (8) to
jointly optimize r and e. The objective function is shown in the following.

min
e≥0,r≥0

cr⊤(In − Ã)r+ (1− c)||r− e||2F︸ ︷︷ ︸
Fault propagation

+λ||(rr⊤) ◦M− P̃||2F + τ ||e||1︸ ︷︷ ︸
Vanishing correlation reconstruction

(23)

To optimize this objective function, we can use an alternating scheme. That is, we
optimize the objective with respect to r while fixing e, and vise versa. This procedure
continues until convergence. The objective function is invariant under these updates if
and only if r, e are at a stationary point [Lee and Seung 2001]. Specifically, the solution
to the optimization problem in Eq. (23) is based on the following theorem, which is
derived from the Karush-Kuhn-Tucker (KKT) complementarity condition [Boyd and
Vandenberghe 2004]. The derivation of it and the proof of Theorem 3 is similar to that
of Theorem 1.

THEOREM 3. Alternatively updating e and r according to Eq. (24) and Eq. (25) will
monotonically decrease the objective function in Eq. (23) until convergence.

r← r ◦
{
Ãr+ 2λ(P̃ ◦M)r+ (1− c)e

r+ 2λ [(rr⊤) ◦M] r

} 1
4

(24)

e← e ◦
[

2(1− c)r

τ1n + 2(1− c)e

] 1
2

(25)

Based on Theorem 3, we can develop the iterative multiplicative updating algorithm
for optimization similar to Algorithm 1. Due to page limit we skip the details. We refer
to this ranking algorithm as R-RCA. From Eq. (24) and Eq. (25), we observe that the
calculation of the inverse of the n×n matrix and the multiplication between two n×n
matrices in Algorithm 1 are not necessary. As we will see in Section 8.5, the relaxed
versions of our algorithm can greatly improve the computational efficiency.

5. SOFTMAX NORMALIZATION

In Section 3, we use the product ri · rj as the strength of evidence that the correlation
between node i and j is vanishing (broken). However, it suffers from the extreme values
in the ranking values r. To reduce the influence of the extreme values or outliers,
we employ the softmax normalization on the ranking values r. The ranking values
are nonlinearly transformed using the sigmoidal function before the multiplication is
performed. Thus, the reconstruction error is expressed by ||(σ(r)σ⊤(r)) ◦M − P̃||2F ,
where σ(·) is the softmax function with:

σ(r)i =
eri∑n

k=1 e
rk
, (i = 1, ..., n). (26)

The corresponding objective function in Alg. 1 is modified to the following

min
e≥0

||(σ(Be)σ⊤(Be)) ◦M− P̃||2F + τ ||e||1. (27)
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Similarly, the objective function for Eq. (23) is modified to the following

min
e≥0,r≥0

cr⊤(In − Ã)r+ (1− c)||r− e||2F + λ||(σ(r)σ⊤(r)) ◦M− P̃||2F + τ ||e||1. (28)

The optimization of these two objective functions are based on the following two
theorems.

THEOREM 4. Updating e according to Eq. (29) will monotonically decrease the ob-
jective function in Eq. (27) until convergence.

e← e ◦
{

4B⊤Ψ(P̃ ◦M)σ(Be)

4 [B⊤ (Ψσ(Be)σ⊤(Be)) ◦M]σ(Be) + τ1n

} 1
4

, (29)

where Ψ =
{
diag [σ(Be)] − σ(Be)σ⊤(Be)

}
.

THEOREM 5. Updating r according to Eq. (30) will monotonically decrease the ob-
jective function in Eq. (28) until convergence.

r← r ◦





Ãr+ 2λ
[(

(σ(r)1⊤
n ) ◦ P̃+ ρΛ

)
◦M

]
σ(r) + (1− c)e

r+ 2λ
[(

(σ(r) ◦ σ(r))σ⊤(r) + σ(r)(σ⊤(r)P̃)
)
◦M

]
σ(r)





1
4

, (30)

where Λ = σ(r)σ⊤(r) and ρ = σ⊤(r)σ(r).

Theorem 4 and Theorem 5 can be proven with a similar strategy to that of Theorem
1. We refer to the ranking algorithms with softmax normalization (Eq. (27) and Eq.
(28)) as RCA-SOFT and R-RCA-SOFT respectively.

6. TEMPORAL SMOOTHING ON MULTIPLE BROKEN NETWORKS

As discussed in Section 1, although the number of anomaly nodes could increase due
to fault propagation in the network, the root cause anomalies will be stable within a
short time period T [Jiang et al. 2006b]. Based on this intuition, we further develop a
smoothing strategy by jointly considering the temporal broken networks. Specifically,
we add a smoothing term ||e(t) − e(t−1)||22 to the objective functions. Here, e(t−1) and
e(t) are causal anomaly ranking vectors for two successive time points. For example,
the objective function of algorithm RCA with temporal broken networks smoothing is
shown in Eq. (31).

min
e(t)≥0,1≤t≤T

T∑

t=1

[
||(Be(t)(e(t))⊤B⊤) ◦M− P̃(t)||2F + τ ||e(t)||1

]
+ α||e(t) − e(t−1)||22︸ ︷︷ ︸

Temporal smoothing

(31)
Here, P̃(t) is the degree-normalized adjacency matrix of broken network at time point
t. Similar to the discussion in Section 3.3, we can derive the updating formula of Eq.
(31) in the following.

e(t) ← e(t) ◦
{

4B⊤(P̃(t) ◦M)⊤Be(t) + 2αe(t−1)

4B⊤
[
M ◦ (Be(t)(e(t))⊤B⊤)

]
Be(t) + τ1n + 2αe(t)

} 1
4

(32)

The updating formula for R-RCA, RCA-SOFT, and R-RCA-SOFT with temporal bro-
ken networks smoothing is similar. Due to space limit, we skip the details. We refer
to the ranking algorithms with temporal networks smoothing as T-RCA, T-R-RCA, T-
RCA-SOFT and T-R-RCA-SOFT respectively.
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7. LEVERAGING PRIOR KNOWLEDGE

In real-life applications, we may have prior knowledges that reflect to what extent a
node is harmed by the causal anomalies at a certain time point. In this section, we ex-
tend our RCA model to a semi-supervised setting to incorporate such prior knowledge
so that the performance of causal anomaly inference can be further enhanced.

7.1. Leveraging Node Attributes

One common type of prior knowledge can be represented by a numeric attribute for
each node that measures the degree that node is anomalous at the observation time
point. For example, the attribute value can be the absolute bias of the monitoring data
of a node that deviates from its predicted normal value at a time point[Chen et al.
2008].

Let vi ≥ 0 represent the anomalous degree of node i, our goal is to leverage these
attributes in a principled manner to improve the causal anomaly inference capability
of our model. It is important to note that, usually the attributes only partially covers
the nodes in the invariant network due to the short of prior knowledges. That is, let
V be the set of all nodes in the invariant network, then vi is only available for node
i ∈ Vp, where Vp ⊆ V . To account for this sparsity of prior knowledge, we define an
indicator ui ∈ {0, 1} for each node i s.t. ui = 1 if node i has a valid vi; ui = 0 otherwise.

Because vi measures the degree that node i is impacted by causal anomalies, we can
use ri in Eq. (6) to approximate vi. Specifically, we want to minimize the inconsistency
of ui(ri − vi)

2. Let v ∈ R
n×1
+ with the ith entry as vi (note vi = 0 if i 6∈ Vp), and

Du ∈ {0, 1}n×n be a diagonal matrix with (Du)ii as ui, then we can obtain a matrix
form of the inconsistencies as (r−v)⊤Du(r−v). By integrating this loss function with
our RCA model in Eq. (6), and replacing r by Be, we obtain an objective function that
enables node attributes as following.

min
e≥0

||(Bee⊤B⊤) ◦M− P̃||2F + τ ||e||1 + β(Be− v)⊤Du(Be− v)︸ ︷︷ ︸
Leveraging prior knowledge

(33)

where β is a parameter that measures the importance of prior knowledge. Intuitively,
the more reliable the prior knowledge, the larger the value of β.

The objective function in Eq. (33) can be optimized by an updating formula as sum-
marized by the following theorem. The derivation of this formula follows a similar
strategy as those discussed in Sec. 3.3

THEOREM 6. Updating e according to Eq. (34) will monotonically decrease the ob-
jective function in Eq. (33) until convergence.

e← e ◦
{

4B⊤(P̃ ◦M)⊤Be+ 2βB⊤(u ◦ v)
4B⊤ [M ◦ (Bee⊤B⊤)]Be+ 2βB⊤ [u ◦ (Be)] + τ1n

} 1
4

(34)

The formal algorithm that considers node attributes can be similarly formulated
as Alg. 1. In the following, we refer to the semi-supervised ranking algorithm using
Eq. (34) as RCA-SEMI.

7.2. Learning the Reliability of Prior Knowledge

In real practice, because of noises, not all node attributes are reliable. It is likely that
a considerable part of {vi} is inconsistent with the current broken status of the in-
variant network and can mislead causal anomaly inference if we trust them without
differentiation. To avoid the problem caused by noisy node attributes, next, we develop
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a strategy to automatically select reliable node attributes from unreliable ones to im-
prove the robustness of our model.

In Eq. (33), all valid node attributes vi are treated equally by assigning the same
weights ui = 1. A more practical design is to allow ui to vary based on the reliability
of vi. Ideally, ui is small if vi is inconsistent with the anomalous status of node i as
inferred from fault propagation. This inconsistency can be measured by (ri − vi)

2.
Therefore, we can modify the optimization problem in Eq. (33) as following to allow
automatic learning of u.

min
e,u≥0

||(Bee⊤B⊤) ◦M− P̃||2F + τ ||e||1 + β
∑

i∈VP

ui(Be− v)2i + γ
∑

i∈Vp

u2
i

s.t.
∑

i∈Vp

ui = |Vp|
(35)

In the above equation, we enforce the equality constraint to allow different ui to be
correlated and comparable for selection purpose. The ℓ2 norm on u is enforced to avoid
trivial solutions. Without it, all entries in u will be zeros except for ui corresponding
to the least inconsistency (Be− v)2i . Here, γ is a parameter controlling the complexity
of u. Typically, larger γ results in more non-zero entries in u.

Because the problem in Eq. (35) is not jointly convex in e and u, we take an alter-
nating minimization approach. The solution to the subproblem w.r.t. e is the same as
Eq. (34). Next, we discuss the solution to u.

First, we denote û = u(Vp) to be the projection of u on node set Vp, and n̂ = |Vp|. Let

w ∈ R
n̂×1
+ with wi = (Be− v)2i for i ∈ Vp. Then we can write the subproblem w.r.t. û as

min
û≥0

βû⊤w + γû⊤û

s.t. û⊤1n̂ = n̂
(36)

where 1n̂ is a length-n̂ vector with all entries as 1.
Eq. (36) is a quadratic optimization problem with respect to u, whose Lagrangian

function can be formulated as following.

Lu(û,η, θ) = βû⊤w + γû⊤û− û⊤η − θ(û⊤1n̂ − n̂) (37)

where η = [η1, η2, ..., ηn̂]
⊤ ≥ 0 and θ ≥ 0 are the Lagrangian multipliers. The opti-

mal û∗ should satisfy the following Karush-Kuhn-Tucker (KKT) conditions[Boyd and
Vandenberghe 2004]:

(1) Stationary condition. ∇û∗Lu(û,η, θ) = βw + 2γû∗ − η − θ1n̂ = 0n̂

(2) Feasibility condition. û∗ ≥ 0n̂, (û∗)⊤1n̂ − 1 = 0
(3) Complementary slackness. ηiû

∗
i = 0, 1 ≤ i ≤ n̂

(4) Nonnegativity condition. η ≥ 0n̂

From the stationary condition, we can obtain ûi as

ûi =
ηi + θ −wi

2γ

where we can observe that ûi depends on the specification of ηi and θ. Similar to [Yu
et al. 2013], we divide the problem into three cases:

(1) When θ −wi > 0, since ηi ≥ 0, we have hatui > 0. From the complementary slack-
ness, ηiûi = 0, we have ηi = 0, therefore, ûi =

θ−wi

2γ .

(2) When θ −wi < 0, since ûi ≥ 0, we have ηi > 0. Because ηiûi = 0, we have ûi = 0.
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(3) When θ −wi = 0, we have ûi =
ηi

2γ . Since ηiûi = 0, we have ûi = 0 and ηi = 0.

Therefore, if we sort w1 ≤ w2 ≤ ... ≤ wn̂, there exists θ̃ > 0 s.t. θ̃ − wt > 0 and
θ̃ −wt ≤ 0. Then ûi can be solved as following.

ûi =

{
θ−wi

2γ , if i ≤ t

0, otherwise
(38)

where θ can be solved by using
∑t

i=1 ûi = n̂, i.e.,

θ =
2γn̂+

∑t
i=1 wi

t
(39)

Eq. (38) implies the intuition of the assignment of ui. That is, when wi is large,
ui is small. Recall wi represents the inconsistency between propagation score ri and
node attribute vi, which may come from the noises in the prior knowledge. Therefore,
Eq. (38) assigns small weights to large inconsistencies to reduce the negative impacts
of noisy node attributes and get a consensus result, hence improve the robustness of
our model.

In Eq. (39), γ relates to the selectivity of the model. When γ is very large, ûi becomes
large, and all node attributes will be selected with nearly equal weights. When γ is very
small, at least one node attribute (with the smallest wi) will be selected. Therefore, we
can use γ to control how many node attributes will be integrated for causal anomaly
ranking.

From Eq. (38) and Eq. (39), we can search the value of t from n̂ to 1 decreasingly [Yu
et al. 2013]. Once θ −wt > 0, then we find the value of t. Then we can calculate û1, ...,
ûn̂ according to Eq. (38). The algorithm for solving u is involved in Alg. 2. In Alg. 2, e
and u are optimized alternately. Since both optimization procedures decrease the value
of the objective function in Eq. (35) and the objective function value is lower bounded
by 0, Alg. 2 is guaranteed to converge to a local minima of the optimization problem
in Eq. (35). In the following, we refer to the semi-supervised ranking algorithm with
weight learning as W-RCA-SEMI.

8. EMPIRICAL STUDY

In this section, we perform extensive experiments to evaluate the performance of the
proposed methods (summarized in Table I). We use both simulated data and real-
world monitoring datasets. For comparison, we select several state-of-the-art meth-
ods, including mRank and gRank in [Ge et al. 2014; Jiang et al. 2006a], and LBP
[Tao et al. 2014]. For all the methods, the tuning parameters were tuned using cross
validation. We use several evaluation metrics including precision, recall, and nDCG
[Järvelin and Kekäläinen 2002] to measure the performance. The precision and recall
are computed on the top-K ranking result, where K is typically chosen as twice the
actual number of ground-truth causal anomalies [Järvelin and Kekäläinen 2002; Tao

et al. 2014]. The nDCG of the top-p ranking result is defined as nDCGp =
DCGp

IDCGp
,

where DCGp =
∑p

i=1
2reli−1

log2(1+i) , IDCGp is the DCGp value on the ground-truth, and

p is smaller than or equal to the actual number of ground-truth anomalies. The reli
represents the anomaly score of the ith item in the ranking list of the ground-truth.

8.1. Simulation Study

We first evaluate the performance of the proposed methods using simulations. We have
followed [Ge et al. 2014; Tao et al. 2014] in generating the simulation data.
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ALGORITHM 2: W-RCA-SEMI

Input: Network Gl denoting the invariant network with n nodes, and is represented by an
adjacency matrix A, c is the network propagation parameter, τ is the parameter to
control the sparsity of e, P̃ is the normalized adjacency matrix of the broken network,
M is the logical matrix of Gl (1 with edge, 0 without edge), v is the vector of node
attributes, Vp is the set of nodes having valid node attributes, β is a parameter to
control semi-supervision, γ is a parameter to control the complexity of the learned
weights

Output: Ranking vector e, weight vector u

1 begin
2 Initialize ûi = 1, ∀i ∈ Vp;
3 repeat
4 Set ui = ûi ∀i ∈ Vp; ui = 0 ∀i 6∈ Vp;
5 Inferring e by Eq. (34);

6 Compute wi = ((Be)i − vi)
2, ∀i ∈ Vp;

7 Sort {wi}1≤i≤n̂ in increasing order;
8 t← n̂+ 1;
9 do

10 t← t− 1;

11 θ ←
2γn̂+

∑t
i=1 wi

t
;

12 while θ −wt ≤ 0 and t > 1;
13 for i← 1 to t do

14 ûi ←
θ−wi

2γ
;

15 end
16 for i← t+ 1 to n̂ do
17 ûi ← 0;
18 end

19 until convergence;
20 end

8.1.1. Data Generation. We first generate 5000 synthetic time series data to simulate
the monitoring records2. Each time series contains 1,050 time points. Based on the
invariant model introduced in Sec. 2.1, we build the invariant network by using the
first 1,000 time points in the time series. This generates an invariant network contain-
ing 1,551 nodes and 157,371 edges. To generate invariant network of different sizes,
we randomly sample 200, 500, and 1000 nodes from the whole invariant network and
evaluate the algorithms on these sub-networks.

To generate the root cause anomaly, we randomly select 10 nodes from the network,
and assign each of them an anomaly score between 1 and 10. The ranking of these
scores is used as the ground-truth. To simulate the anomaly prorogation, we further
use these scores as the vector e in Eq. (6) and calculate r (c = 0.9). The values of
the top-30 time series with largest values in r are then modified by changing their
amplitude value with the ratio 1 + ri. That is, if the observed values of one time series

is y1, after changing it from y1 to y2, the manually-injected degree of anomaly |y2−y1|
|y1|

is

equal to 1+ri. We denote this anomaly generation scheme as amplitude-based anomaly
generation.

8.1.2. Performance Evaluation. Using the simulated data, we compare the performance
of different algorithms. In this example, we only consider the training time series as

2http://cs.unc.edu/∼weicheng/synthetics5000.csv
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Fig. 3. Comparison on synthetic data(K,p = 10).
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Fig. 4. Performance with different noise ratio(K, p = 10).

one snapshot; multiple snapshot cases involving temporal smoothing will be examined
in the real datasets. Due to the page limit, we report the precision, recall and nDCG
for only the top-10 items considering that the ground-truth contains 10 anomalies.
Similar results can be observed with other settings of K and p. For each algorithm,
reported result is averaged over 100 randomly selected subsets of the training data.

From Fig. 3, we have several key observations. First, the proposed algorithms sig-
nificantly outperform other competing methods, which demonstrates the advantage
of taking into account fault prorogation in ranking casual anomalies. We also notice
that performance of all ranking algorithms will decline on larger invariant networks
with more nodes, indicating that anomaly ranking becomes more challenging on net-
works with more complex behaviour. However, the ranking result with softmax is less
sensitive to the size of the invariant network, suggesting that the softmax normaliza-
tion can effectively improve the robustness of the algorithm. This is quite beneficial
in real-life applications, especially when data are noisy. Finally, we observe that RCA
and RCA-SOFT outperform R-RCA and R-RCA-SOFT, respectively. This implies that
the relaxed versions of the algorithms are less accurate. Nevertheless, their accuracies
are still very comparable to those of the RCA and RCA-SOFT methods. In addition,
the efficiency of the relaxed algorithms is greatly improved, as discussed in Sec. 4 and
Sec. 8.5.

8.1.3. Robustness Evaluation. Practical invariant network and broken edges can be
quite noisy. In this section, we further examine the performance of the proposed al-
gorithms w.r.t. different noise levels. To do this, we randomly perturb a portion of
non-broken edges in the invariant network. Results are shown in Fig. 4. We observe
that, even when the noise ratio approaches 50%, the precision, recall and nDCG of
the proposed approaches still attain 0.5. This indicates the robustness of the proposed
algorithms. We also observe that, when the noise ratio is very large, RCA-SOFT and
R-RCA-SOFT work better than RCA and R-RCA, respectively. This is similar to those
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Table II. Examples of categories and monitors.

Categories Samples of Measurements
CPU utilization, user usage time, IO wait time
DISK # of write operations, write time, weighted IO time
MEM run queue, collision rate, UsageRate
NET error rate, packet rate
SYS UTIL, MODE UTIL

Table III. Data set description.

Data Set #Monitors #invariant links #broken edges at given time point
BIS 1273 39116 18052

Coal Plant 1625 9451 56
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Fig. 5. Two example monitoring data of BIS.

observations made in Sec. 8.1.2. As has been discussed in Sec. 5, the softmax nor-
malization can greatly suppress the impact of extreme values and outliers in r, thus
improves the robustness.

8.2. Ranking Causal Anomalies on Bank Information System Data

In this section, we apply the proposed methods to detect causal abnormal components
on a Bank Information System (BIS) data set [Ge et al. 2014; Tao et al. 2014]. The
monitoring data are collected from a real-world bank information system logs, which
contain 11 categories. Each category has a varying number of time series, and Table II
gives five categories as examples. The data set contains the flow intensities collected
every 6 seconds. In total, we have 1,273 flow intensity time series. The training data
is collected at normal system states, where each time series has 168 time points. The
invariant network is then generated on the training data as described in Sec. 2.1.
The testing data of the 1,273 flow intensity time series are collected during abnormal
system states, where each time series contain 169 time points. We track the changes
of the invariant network with the testing data using the method described in Sec. 2.1.
Once we obtain the broken networks at different time points, we will then perform
causal anomaly ranking in these temporal slots jointly. Properties of the networks
constructed are summarized in Table III.

Based on the knowledge from system experts, the root cause anomaly at t = 120
in the testing data is related to “DB16”. An illustration of two “DB16” related mon-
itoring data are shown in Fig. 5. We highlight t = 120 with red square. Obviously,
their behaviour looks anomalous from that time point on. Due to the complex de-
pendency among different monitoring time series (measurements), it is impractical
to obtain a full ranking of abnormal measurement. Fortunately, we have a unique se-
mantic label associated with each measurement. For example, some semantic labels
read “DB16:DISK hdx Request” and “WEB26 PAGEOUT RATE”. Thus, we can extract
all measurements whose titles have the prefix “DB16” as the ground-truth anomalies.
The ranking score is determined by the number of broken edges associated with each
measurement. Here our goal is to demonstrate how the top-ranked measurements se-
lected by our method are related to the “DB16” root cause. Altogether, there are 80
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Fig. 6. Comparison on BIS data.

Table IV. Top 12 anomalies detected by different methods on BIS data(t:120).

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT

WEB16:NET eth1 BYNETIF HUB18:MEM UsageRate WEB22:SYS MODE UTIL HUB17:DISK hda Request DB17:DISK hdm Block HUB17:DISK hda Request DB17:DISK hdm Block

HUB17:DISK hda Request HUB17:DISK hda Request DB15:DISK hdaz Block DB17:DISK hday Block DB17:DISK hdba Block DB15:PACKET Output DB17:DISK hdba Block

AP12:DISK hd45 Block AP12:DISK hd45 Block WEB12:NET eth1 BYNETIF HUB17:DISK hda Busy DB16:DISK hdm Block HUB17:DISK hda Busy DB16:DISK hdm Block

AP12:DISK hd1 Block AP12:DISK hd1 Block WEB17:DISK BYDSK DB18:DISK hdba Block DB18:DISK hdm Block DB17:DISK hdm Block DB16:DISK hdj Request

WEB19:DISK BYDSK AP11:DISK hd45 Block DB18:DISK hdt Busy DB18:DISK hdm Block DB16:DISK hdj Request DB17:DISK hdba Block DB16:DISK hdax Request

AP11:DISK hd45 Block AP11:DISK hd1 Block DB15:DISK hdl Request DB16:DISK hdm Block DB18:DISK hdba Block DB18:DISK hdm Block DB18:DISK hdag Request

AP11:DISK hd1 Block DB17:DISK hday Block WEB21:DISK BYDSK DB17:DISK hdba Block DB16:DISK hdax Request DB16:DISK hdm Block DB18:DISK hdm Block

DB16:DISK hdm Block DB15:PACKET Input WEB27:FREE UTIL DB17:DISK hdm Block DB18:DISK hdag Request DB18:DISK hdba Block DB18:DISK hdbu Request

DB17:DISK hdm Block DB17:DISK hdm Block WEB19:NET eth0 DB16:DISK hdba Block DB18:DISK hdbu Request DB17:DISK hday Block DB18:DISK hdx Request

DB18:DISK hdm Block DB16:DISK hdm Block WEB25:PAGEOUT RATE DB16:DISK hdj Request DB16:DISK hdba Block DB16:DISK hdba Block DB18:DISK hdax Request

DB17:DISK hdba Block DB17:DISK hdba Block DB16:DISK hdy Block DB18:DISK hdag Request DB18:DISK hdx Request DB16:DISK hdj Request DB18:DISK hdba Block

DB18:DISK hdba Block DB18:DISK hdm Block AP13:DISK hd30 Block DB16:DISK hdax Request DB18:DISK hdax Request DB18:DISK hdag Request DB16:DISK hdx Request

Table V. Number of “DB16” related monitors in top 32 results on BIS data(t:120).

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT
10 7 4 14 16 13 17

measurements related to “DB16”, so we report the precision, recall with K ranging
from 1 to 160 and the nDCG with p ranging from 1 to 80.

The results are shown in Fig. 6. The relative performance of different approaches
is consistent with the observations in the simulation study. Again, the proposed al-
gorithms outperform baseline methods by a large margin. To examine the top-ranked
items more clearly, we list the top-12 results of different approaches in Table IV and re-
port the number of “DB16”-related monitors in Table V. From Table IV, we observe that
the three baseline methods only report one “DB16” related measurement in the top-12
results, and the actual rank of the “DB16”-related measurement appear lower (worse)
than that of the proposed methods. We also notice that the ranking algorithms with
softmax normalization outperform others. From Tables IV and V, we can see that top
ranked items reported by RCA-SOFT and R-RCA-SOFT are more relevant than those
reported by RCA and R-RCA, respectively. This clearly illustrates the effectiveness of
the softmax normalization in reducing the influence of extreme values or outliers in
the data.

As discussed in Sec. 1, the root anomalies could further propagate from one compo-
nent to related ones over time, which may or may not necessarily relate to “DB16”.
Such anomaly propagation makes anomaly detection even harder. To study how the
performance varies at different time points, we compare the performance at t = 120
and t = 122, respectively in Fig. 7 (p,K=80). Clearly, the performance declines for all
methods. However, the proposed methods are less sensitive to anomaly propagation
than others, suggesting that our approaches can better handle the fault propagation
problem. We believe this is attributed to the network diffusion model that explicitly
captures the fault propagation processes. We also list the top-12 abnormal at t = 122
in Table VI. Due to page limit, we only show the results of mRank, gRank, RCA-SOFT
and R-RCA-SOFT. By comparing the results in Tables IV and VI, we can observe that

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2016.



39:20 W. CHENG et al.

mRank gRank LBP RCA RCA−SOFT R−RCA R−RCA−SOFT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algorithm
pr

ec
is

io
n@

80

 

 

t:120
t:122

(a) precision

mRank gRank LBP RCA RCA−SOFT R−RCA R−RCA−SOFT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algorithm

re
ca

ll@
80

 

 

t:120
t:122

(b) recall

mRank gRank LBP RCA RCA−SOFT R−RCA R−RCA−SOFT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algorithm

nD
C

G
80

 

 

t:120
t:122

(c) nDCG

Fig. 7. Performance at t:120 v.s. t:122 on BIS data(p,K=80).

Table VI. Top 12 anomalies on BIS data(t:122).

mRank gRank RCA-SOFT R-RCA-SOFT
WEB21:NET eth1 BYNETIF WEB21:NET eth0 BYNETIF DB17:DISK hdm Block DB17:DISK hdm Block
WEB21:NET eth0 BYNETIF WEB21:NET eth1 BYNETIF DB17:DISK hdba Block DB17:DISK hdba Block

WEB21:FREE UTIL HUB18:MEM UsageRate DB16:DISK hdm Block DB16:DISK hdm Block
AP12:DISK hd45 Block WEB21:FREE UTIL DB18:DISK hdm Block DB16:DISK hdj Request
AP12:DISK hd1 Block WEB26:PAGEOUT RATE DB16:DISK hdj Request DB16:DISK hdax Request

DB18:DISK hday Block AP12:DISK hd45 Block DB18:DISK hdba Block DB18:DISK hdm Block
DB18:DISK hdk Block AP12:DISK hd1 Block DB16:DISK hdax Request DB18:DISK hdx Request

DB18:DISK hday Request DB18:DISK hday Block DB16:DISK hdba Block DB18:DISK hdba Block
DB18:DISK hdk Request DB18:DISK hdk Block DB18:DISK hdx Request DB16:DISK hdba Block
WEB26:PAGEOUT RATE DB18:DISK hday Request DB18:DISK hdbl Request DB18:DISK hdax Request

DB17:DISK hdm Block DB18:DISK hdk Request DB16:DISK hdx Busy DB16:PACKET Inputx
DB16:DISK hdm Block AP11:DISK hd45 Block DB16:DISK hdx Request DB18:DISK hdbl Request

Table VII. Top 12 anomalies reported by methods with temporal smoothing on BIS data(t:120-121).

T-RCA T-RCA-SOFT T-R-RCA T-R-RCA-SOFT

WEB14:NET eth0 BYNETIF DB17:DISK hdm Block WEB14:NET eth0 BYNETIF DB17:DISK hdm Block
WEB16:DISK BYDSK DB17:DISK hdba Block WEB21:NET eth0 BYNETIF DB17:DISK hdba Block

DB18:DISK hdba Block DB16:DISK hdm Block WEB16:DISK BYDSK PHYS DB16:DISK hdm Block
DB18:DISK hdm Block DB18:DISK hdm Block WEB21:FREE UTIL DB18:DISK hdm Block
DB17:DISK hdba Block DB16:DISK hdj Request DB15:PACKET Output DB16:DISK hdj Request
DB16:DISK hdm Block DB18:DISK hdba Block DB16:DISK hdj Request DB18:DISK hdba Block
DB17:DISK hdm Block DB16:DISK hdax Request DB17:DISK hdm Block DB16:DISK hdax Request
DB16:DISK hdba Block DB16:DISK hdba Block DB16:DISK hdba Block DB18:DISK hdx Request
DB16:DISK hdj Request DB18:DISK hdx Request DB17:DISK hday Block DB16:DISK hdba Block

DB16:DISK hdax Request DB18:DISK hdbl Request DB16:DISK hdm Block DB18:DISK hdbl Request
DB16:DISK hdx Busy DB16:DISK hdx Busy DB16:DISK hdax Request DB16:DISK hdx Request
DB16:DISK hdbl Busy DB16:DISK hdx Request DB18:DISK hdba Block DB16:DISK hdx Busy

Table VIII. Comparison on the number of “DB16” related anomalies in top-12 results on BIS
data.

RCA RCA-SOFT R-RCA R-RCA-SOFT
Without temporal smoothing 4 4 3 4

With temporal smoothing 6 6 4 6

RCA-SOFT and R-RCA-SOFT significantly outperform mRank and gRank, the lat-
ter two methods based on the percentage of broken edges are more sensitive to the
anomaly prorogation.
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Table IX. Top anomalies on coal plant data.

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT

Y0039 Y0256 Y0256 X0146 X0146 X0146 X0146
X0128 Y0045 X0146 Y0045 Y0256 X0128 X0166
Y0256 Y0028 F0454 X0128 F0454 F0454 X0144
H0021 X0146 X0128 Y0030 J0079 Y0256 X0165
X0146 X0057 Y0039 X0057 Y0308 Y0039 X0142
X0149 X0061 X0166 X0158 X0166 Y0246 J0079
H0022 X0068 X0144 X0068 X0144 Y0045 X0164
F0454 X0143 X0149 X0061 X0128 Y0028 X0145
H0020 X0158 J0085 X0139 X0165 X0056 X0143
X0184 X0164 X0061 X0143 X0142 J0079 X0163
X0166 J0164 Y0030 H0021 H0022 X0149 J0164
J0164 H0021 J0079 F0454 X0143 X0145 X0149

(a) Egonet of node “X0146” (b) Egonet of node
“Y0256”

Fig. 8. Egonet of node “X0146” and “Y0256” in invariant network and vanishing correlations(red edges) on
coal plant data.

We further validate the effectiveness of proposed methods with temporal smoothing.
We report the top-12 results of different methods with smoothing at two successive
time points t = 120 and t = 121 in Table VII. The number of “DB16”-related monitors in
the top-12 results is summarized in Table VIII. From Tables VII and VIII, we observe a
significant performance improvement of our methods with temporal broken networks
smoothing compared with those without smoothing. As discussed in Sec. 6, since causal
anomalies of a system usually do not change within a short period of time, utilizing
such smoothness can effectively suppress noise and thus give better ranking accuracy.

8.3. Fault Diagnosis on Coal Plant Data

In this section, we test the proposed methods in the application of fault diagnosis on
a coal plant cyber-physical system data. The data set contains time series collected
through 1625 electric sensors installed on different components of the coal plant sys-
tem. Using the invariant model described in Sec. 2.1, we generate the invariant net-
work that contains 9451 invariant links. For privacy reasons, we remove sensitive
descriptions of the data.

Based on knowledge from domain experts, in the abnormal stage the root cause is
associated with component “X0146”. We report the top-12 results of different ranking
algorithms in Table IX. We observe that the proposed algorithms all rank component
“X0146” the highest, while the baseline methods could give higher ranks to other com-
ponents. In Fig. 8(a), we visualize the egonet of the node “X0146” in the invariant
network, which is defined as the 1-step neighborhood around node “X0146”, including
the node itself, direct neighbors, and all connections among these nodes in the invari-
ant network. Here, green lines denote the invariant link, and red lines denote vanish-
ing correlations (broken links). Since the node “Y0256” is top-ranked by the baseline
methods, we also visualize its egonet in Fig. 8(b) for a comparison. There are 80 links
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Fig. 10. Comparison on BIS data with noisy prior knowledge

related to “X0146” in the invariant network, and 14 of them are broken. Namely the
percentage of broken edges is only 17.5% for a truly anomalous component. In contrast,
the percentage of broken edges for the node “Y0256” is 100%, namely a false-positive
node can have a very high percentage of broken edges in practice. This explains why
baseline approaches using the percentage of broken edges could fail, because the per-
centage of broken edges does not serve as a reliable evidence of the degree of causal
anomalies. In comparison, our approach takes into account the global structures of
the invariant network via network propagation, thus the resultant ranking is more
meaningful.

8.4. Evaluation of Leveraging Prior Knowledge

In this section, we evaluate the effectiveness of the semi-supervised algorithms pro-
posed in Sec. 7, using the BIS dataset. We simulate node attributes by the following
strategy. First, we set “DB16” related components as seeds (recall these components
are ground truth anomalies), and run label propagation algorithm to obtain a score
for each node. Then, we set the scores of “DB16” related nodes to zero and treat the
remaining non-zeros scores as the attributes of other nodes. Finally, we randomly di-
vide the remaining attributed nodes Vp into three equal parts V1, V2 and V3, and then
form Vp1 = V1, Vp2 = {V1,V2} and Vp3 = {V1,V2,V3}. Algorithm RCA-SEMI is run
with Vp1, Vp2 and Vp3 respectively to evaluate its capability to uncover “DB16” related
components with the guidance of these different partial prior knowledges.

Fig. 9 shows the results of RCA-SEMI. For clarity, we only show RCA as a baseline.
We also consider another degraded version of RCA-SEMI, which is shown as “Pri-
orOnly”. This method solves e by minimizing (Be−v)⊤Du(Be−v)+ τ‖e‖1, which only
uses node attributes without considering label propagation. From Fig. 9, we observe
RCA-SEMI can effectively incorporate node attributes to improve causal anomaly in-
ference accuracy. More prior knowledge typically results in better accuracy. The poor
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performance of “PriorOnly” also indicates that using partial prior knowledge alone is
not effective. This demonstrates the importance to take into account the fault propa-
gation when incorporating partial node attributes.

Next, we evaluate the robustness of Alg. 2, W-RCA-SEMI. To this purpose, we man-
ually inject noises in node attributes. Specifically, we randomly pick certain number
of nodes with non-zero attributes, and change their attributes to a large value (e.g.,
3). By varying the number of noisy nodes, we can evaluate the impacts of noises on
RCA-SEMI and W-RCA-SEMI. Fig. 10(a) shows the area under the precision-recall
curve (PRAUC) w.r.t. varying number of noisy nodes. Higher PRAUC indicates better
accuracy. From Fig. 10(a), we observe the performance RCA-SEMI is largely impacted
by the injected noisy attributes, while W-RCA-SEMI performs stably. By investigating
the learned weights in u, we get the insights of W-RCA-SEMI. Fig. 10(b) presents the
learned weights ui vs. the inconsistency of (ei − vi)

2 for nodes having valid vi’s, where
the nodes are ordered by descending order of ui. As can be seen, W-RCA-SEMI effec-
tively assigns small weights to large inconsistencies. Thus it can reduce the negative
impacts of noisy attributes and obtain robust performance as shown in Fig. 10(a).

8.5. Time Performance Evaluation

In this section, we study the efficiency of proposed methods using the following met-
rics: 1) the number of iterations for convergence; 2) the running time (in seconds) ;
and 3) the scalability of the proposed algorithms. Fig. 11(a) shows the value of the
objective function with respect to the number of iterations on different data sets. We
can observe that, the objective value decreases steadily with the number of iterations.
Typically less than 100 iterations are needed for convergence. We also observe that our
method with softmax normalization takes fewer iterations to converge. This is because
the normalization is able to reduce the influence of extreme values [Sutton and Barto
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Fig. 13. Parameter study results. The shown nDCG values are obtained by varying one parameter while
fixing others.

1998]. We also report the running time of each algorithm on the two real data sets
in Fig. 12. We can see that the proposed methods can detect causal anomalies very
efficiently, even with the temporal smoothing module.

To evaluate the computational scalability, we randomly generate invariant networks
with different number of nodes (with network density=10) and examine the computa-
tional cost. Here 10% edges are randomly selected as broken links. Using simulated
data, we compare the running time of RCA, R-RCA, RCA-SOFT, and R-RCA-SOFT.
Fig. 11(b) plots the running time of different algorithms w.r.t. the number of nodes in
the invariant network. We can see that the relaxed versions of our algorithm are com-
putationally more efficient than the original RCA and RCA-SOFT. These results are
consistent with the complexity analysis in Sec. 4.

8.6. Parameter Study

There are three major parameters c, τ and λ in the proposed RCA family algorithms.
c is the trade-off parameter controlling the propagation strength (see Sec. 3.1). τ is a
parameter controlling the sparsity of the learned vector e in Eq.(8). λ is used for bal-
ancing the propagation and broken network reconstruction in the relaxed RCA model
in Eq. (23). Next, we use the BIS dataset to study the impact of each parameter on the
causal anomaly ranking accuracy.

Fig. 13 shows the anomaly inference accuracy by varying each parameter in turn
while fixing others. The accuracy is measured using nDCGp with p equal to the num-
ber of ground truth anomalies. Using other metrics will give similar trends thus are
omitted for brevity. From the figure, we observe RCA and R-RCA perform stably in
a relatively wide range of each parameter, which demonstrates the robustness of the
proposed models. Specifically, the best c lies around 0.6, indicating the importance to
consider sufficient fault propagations. Note when c = 0 or c = 1, there will be no prop-
agation or no learning of e respectively (see Eq. (6)). For τ , its best value is around 1
and 10, which suggests a sparse vector e because usually there is only a small number
of causal anomalies. Finally, the sharp accuracy increase by changing λ from 0 to non-
zero values indicates the effectiveness of the relaxed RCA model in Eq. (23). The best λ
lies between 0.5 and 2, suggesting the relatively equal importances of fault propagation
and broken network reconstruction in Eq. (23).

9. RELATED WORK

In this section, we review related work on anomaly detection and system diagnosis, in
particular along the following two categories: 1) fault detection in distributed systems;
and 2) graph-based methods.
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For the first category, Yemini et al. [Yemini et al. 1996] proposed to model event
correlation and locate system faults using known dependency relationships between
faults and symptoms. In real applications, however, it is usually hard to obtain such
relationships precisely. To alleviate this limitation, Jiang et al. [Jiang et al. 2006a]
developed several model-based approaches to detect the faults in complex distributed
systems. They further proposed several Jaccard Coefficient based approaches to locate
the faulty components [Jiang et al. 2006b; 2007]. These approaches generally focus on
locating the faulty components, they are not capable of spotting or ranking the causal
anomalies.

Recently, graph-based methods have drawn a lot of interest in system anomaly de-
tections [Akoglu et al. 2015; Chandola et al. 2009], either in static graphs or dynamic
graphs [Akoglu et al. 2015]. In static graphs, the main task is to spot anomalous net-
work entities (e.g., nodes, edges, subgraphs) given the graph structure [Breunig et al.
2000; Henderson et al. 2010]. For example, Akoglu et al. [Akoglu et al. 2010] proposed
the OddBall algorithm to detect anomalous nodes in weighted graphs. Liu et al. [Liu
et al. 2005] proposed to use frequent subgraph mining to detect non-crashing bugs in
software flow graphs. However, these approaches only focus on a single graph; in com-
parison, we take into account both the invariant graph and the broken correlations,
which provides a more dynamic and complete picture for anomaly ranking. On dy-
namic graphs, anomaly detection aims at detecting abnormal events [Rossi et al. 2013].
Most approaches along this direction are designed to detect anomaly time-stamps in
which suspicious events take place, but not to perform ranking on a large number of
system components. Sun et al. proposed to use temporal graphs for anomaly detection
[Sun et al. 2006]. In their approach, a set of initial suspects need to be provided; then
internal relationship among these initial suspects is characterized for better under-
standing of the root cause of these anomalies.

In using the invariant graph and the broken invariance graph for anomaly detection,
Jiang et al. [Jiang et al. 2006b] used the ratio of broken edges in the invariant network
as the anomaly score for ranking; Ge et al. [Ge et al. 2014] proposed mRank and gRank
to rank causal anomalies; Tao et al. [Tao et al. 2014] used the loopy belief propagation
method to rank anomalies. As has been discussed, these algorithms rely heavily on the
percentage of broken edges in egonet of a node. Such local approaches do not take into
account the global network structures, neither the global fault propagation spreading
on the network. Therefore the resultant rankings can be sub-optimal.

There is a number of correlation network based system anomaly localization meth-
ods [Idé et al. 2007; Idé et al. 2009; Hara et al. 2015], which treat the correlation
changes between system components as the basic evidences of fault occurrences. Sim-
ilar to the invariant graph based methods, these methods use the correlation changes
in the egonet of each node at different time points to locate anomalous nodes. Basi-
cally, if there are more correlation changes happen in the egonet of a node, it is more
suspicious to be an anomaly. However, none of these approaches consider fault prop-
agations. Therefore, they cannot exploit the whole structure of a network and are in-
ferior in locating causal anomalies. Some other methods can track the eigenvectors of
temporal correlation networks to detect the anomalous changes of a whole system [Idé
and Kashima 2004; Hirose et al. 2009], but they do not rank nodes for locating causal
anomalies and are different from our work in problem settings.

10. CONCLUSIONS

Detecting causal anomalies on monitoring data of distributed systems is an impor-
tant problem in data mining research. Robust and scalable approaches that can model
the potential fault propagation are highly desirable. We develop a network diffusion
based framework, which simultaneously takes into account fault propagation on the
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network as well as reconstructing anomaly signatures using propagated anomalies.
Our approach can locate causal anomalies more accurately than existing approaches;
in the meantime, it is robust to noise and computationally efficient. Moreover, when
prior knowledges on anomalous status of nodes are available, our approach can ef-
fectively incorporate them to further enhance anomaly detection accuracy. When the
prior knowledges are noisy, our approach can also automatically identify reliable in-
formation and reduce negative impacts of noises. Using both synthetic and real-life
data sets, we show that the proposed methods outperform other competitors by a large
margin.

REFERENCES

Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2010. Oddball: Spotting anomalies in weighted
graphs. In PAKDD. Springer, 410–421.

Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly detection and description:
a survey. Data Min. Knowl. Discov. 29, 3 (2015), 626–688.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000. LOF: identifying density-
based local outliers. In SIGMOD. ACM, 93–104.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM computing
surveys 41, 3 (2009), 15.

Haifeng Chen, Haibin Cheng, Guofei Jiang, and Kenji Yoshihira. 2008. Exploiting local and global invariants
for the management of large scale information systems. In ICDM. IEEE, 113–122.

Yong Ge, Guofei Jiang, Min Ding, and Hui Xiong. 2014. Ranking metric anomaly in invariant networks.
ACM Trans. Knowl. Discov. Data 8, 2 (2014), 8.

Janos Gertler. 1998. Fault detection and diagnosis in engineering systems. CRC press.

Satoshi Hara, Tetsuro Morimura, Toshihiro Takahashi, Hiroki Yanagisawa, and Taiji Suzuki. 2015. A con-
sistent method for graph based anomaly localization. In AISTATS. 333–341.

Keith Henderson, Tina Eliassi-Rad, Christos Faloutsos, Leman Akoglu, Lei Li, Koji Maruhashi, B Aditya
Prakash, and Hanghang Tong. 2010. Metric forensics: a multi-level approach for mining volatile graphs.
In KDD. ACM, 163–172.

Shunsuke Hirose, Kenji Yamanishi, Takayuki Nakata, and Ryohei Fujimaki. 2009. Network anomaly detec-
tion based on eigen equation compression. In KDD. ACM, 1185–1194.
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