

User-Guided Clustering in Heterogeneous Information Networks via Motif-Based Comprehensive Transcription

Yu Shi^{*}, Xinwei He^{*}, Naijing Zhang^{*}, Carl Yang, Jiawei Han

University of Illinois at Urbana-Champaign (UIUC)

*These authors contributed equally to this work.

In real world applications, <u>objects</u> of different types can have different <u>relations</u>, which form <u>heterogeneous</u> information networks (HINs).

• Typed nodes: <u>objects</u>.

Heterogeneous information networks (HINs) are ubiquitous.

Each embodies rich semantics due to the type information.

Movie Reviewing Network

Bibliographic Network

Biomedical Network

Economic Graph

Figures partly from http://xren7.web.engr.illinois.edu/yahoo-dais_award.html, http://www.garrygolden.com/2015/07/06/linkedin-economic-graph-technosolutionism, and http://www.businessinsider.com/explainer-what-exactly-is-the-social-graph-2012-3

- Clustering is a fundamental task in network mining.
- With the rich semantics in HINs, there can be **multiple** reasonable clustering results.
- Result 1 cluster by similar research topics (key terms).
- Result 2 cluster by similar publishing venues.

User-guided clustering – User provides guidance on a very small portion of nodes as seeds.

• E.g., user guidance: the two nodes in the **Brown circles** are in the same cluster.

... likely the user want nodes related to **similar venues** to be clustered together.

... likely result 2 is preferable.

Challenge in User-Guided Clustering

Since guidance is provided only on a very small portion of nodes...

- It is often necessary to exploit signals encoded in the rich semantics of heterogeneous information networks (HINs).
- We resort to network motifs to expose higher-order interaction signals.

Background – Network Motifs

Simpler case: in **homogeneous** networks (not typed)

- Motifs are higher-order structures beyond nodes, edges, and paths (random walks).
- Motifs reveal **higher order interaction** in complex networks such as transportation networks and neuronal networks.
- Bringing performance boost in data mining/machine learning tasks such as clustering, link prediction, ranking, and representation learning.

Background – Motifs in HINs

In the context of **heterogeneous** network (**HINs**)...

- Motifs additionally has type constraints.
- A.k.a. meta-graphs [1] or meta-structures [2].

Examples of Motifs in HINs

[1] Zhao, Huan, et al. "Meta-graph based recommendation fusion over heterogeneous information networks." In KDD, 2017.[2] Huang, Zhipeng, et al. "Meta structure: Computing relevance in large heterogeneous information networks." In KDD, 2016.

Why Would Motifs in HINs Provide Informative Signals?

Can we instead use simpler network structures?

- According to the ground truth labels: only <u>Eric Xing</u> and <u>David</u>
 <u>Blei</u> received their Ph.D. from the same research group.
- Even though every one is well connected with <u>Eric Xing</u>.
- Simpler structures such as paths (known as meta-paths in HINs) are not very discriminative.
- If the user's intention is to cluster by Ph.D. research group, the information from motif would be worth exploiting.

Part of the DBLP network

How to Leverage Motifs?

Option 1: Collapse motifs to pairwise relation.

$$f: (G = (\mathcal{V}, \mathcal{E})) \times \mathcal{M} \to \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$$

- ... so that traditional clustering methods ($\mathcal{V}
 ightarrow \mathcal{C}$) can be applied.
- Example:

 $f(v_1, v_2; m) = \begin{cases} \# \text{ motif instances,} & v_1 \text{ and } v_2 \text{ co-exist in some type-}m \text{ motif instances,} \\ 0, & \text{otherwise.} \end{cases}$

• Will incur some information loss.

How to Leverage Motifs?

Option 2: Comprehensively transcribe signals revealed by motifs.

- A k-node motif instance \rightarrow a k-tuple of nodes
 - \rightarrow an element in a k-th-order tensor.

 $\mathcal{X}_{v_1,v_2,\ldots,v_k}^{(m)} = \begin{cases} \# \text{ motif instances,} & v_1, v_2, \ldots, v_k \text{ constitutes some type-}m \text{ motif instances,} \\ 0, & \text{otherwise.} \end{cases}$

- Not causing information loss.
- **Example:** Motif APA

We resort to this option 2 to preserve as much information as possible.

- As such, we can use motifs to transcribe the information in an HIN to a series of tensors.
- How to use a series of tenors in user-guided clustering?

Revisit on Clustering by Non-Negative Matrix Factorization (NMF)

Given a matrix representing the pairwise relations between nodes

• ... factorize the matrix into two non-negative matrices.

$$\min_{\mathbf{V}_1,\mathbf{V}_2\geq 0} \left\|\mathbf{M}-\mathbf{V}_1^\top\mathbf{V}_2\right\|_F^2$$

• Each row (or column) of the resulting matrix yields the clustering membership for the corresponding node.

Single-Motif–Based Clustering in HINs

Similarly, given a k-th-order tensor

$$\min_{\mathbf{V}_1, \mathbf{V}_2 \ge 0} \left\| \mathcal{X} - \mathcal{I} \times_{i=1}^N \mathbf{V}_i \right\|_F^2 + \lambda \sum_{i=1}^N \left\| \mathbf{V}_i \right\|_1$$
Regularization

• This is essentially **CP decomposition** with additional non-negative

constraints and l_1 regularization.

Proposed Model "MoCHIN" for Motif-Based Clustering in HINs

Proposed Model "MoCHIN" for Motif-Based Clustering in HINs

Inference Algorithm and Speed-Up Tricks

Update rule:

$$\begin{split} \mathbf{V}_{k}^{(l)} \leftarrow \mathbf{V}_{k}^{(l)} & \circ \left[\frac{\mathcal{X}_{(k)}^{(l)} [\otimes_{i=1}^{o(l) \setminus k} \mathbf{V}_{i}^{(l)}] \mathcal{I}_{(k)}^{(l) \top} + \theta(1 - \eta_{k}^{l}) (\mathbf{V}_{\varphi(l,k)}^{*} - \eta_{k}^{l} \mathbf{V}_{k}^{(l)})}{\mathbf{V}_{k}^{(l)} \mathcal{I}_{(k)}^{(l)} [\otimes_{i=1}^{o(l) \setminus k} \mathbf{V}_{i}^{(l)}]^{\top} [\otimes_{i=1}^{o(l) \setminus k} \mathbf{V}_{i}^{(l)}] \mathcal{I}_{(k)}^{(l) \top} + \rho \eta_{k}^{l} \mathbf{M}^{\varphi(l,k)} \circ \mathbf{V}_{\varphi(l,k)}^{*}} \\ & + \theta \eta_{k}^{l} \sum_{\varphi(m,i) \neq (l,k)}^{(m,i) \neq (l,k)} [\mathbf{V}_{i}^{(m)} - \mathbf{V}_{\varphi(l,k)}^{*} + \eta_{k}^{l} \mathbf{V}_{k}^{(l)}]^{+} \\ & + \theta \eta_{k}^{l} \sum_{\varphi(m,i) = \varphi(l,k)}^{(m,i) \neq (l,k)} ([\mathbf{V}_{i}^{(m)} - \mathbf{V}_{\varphi(l,k)}^{*} + \eta_{k}^{l} \mathbf{V}_{k}^{(l)}]^{-} + \eta_{k}^{l} \mathbf{V}_{k}^{(l)}) + \theta(1 - \eta_{k}^{l})^{2} \mathbf{V}_{k}^{(l)} + \lambda \right]^{\frac{1}{2}} \end{split}$$

Challenge: Tensor size grows exponentially with the number of nodes in a motif.

- Multiple speed-up tricks leveraging the **sparsity** of the motif instances and the **compositionality** of dense tensors in the model.
- ... so that the complexity is bounded by the number of motif instances instead of the tensor size

$$\begin{aligned} \left\| \mathcal{X}^{(m)} - \mathcal{I}^{(m)} \times_{i=1}^{o(m)} \mathbf{V}_{i}^{(m)} \right\|_{F}^{2} &= \left\| \mathcal{X}^{(m)} \right\|_{F}^{2} - 2 \left\| \mathcal{X}^{(m)} \circ \mathcal{I}^{(m)} \times_{i=1}^{o(m)} \mathbf{V}_{i}^{(m)} \right\|_{1}^{1} + \left\| \mathcal{I}^{(m)} \times_{i=1}^{o(m)} \mathbf{V}_{i}^{(m)} \right\|_{F}^{2} \\ &= \left\| \mathcal{X}^{(m)} \right\|_{F}^{2} - 2 \sum_{j_{1}, \dots, j_{o}(m)} (\mathcal{X}^{(m)})_{j_{1}, \dots, j_{o}(m)} \sum_{c=1}^{C} \prod_{i=1}^{o(m)} (\mathbf{V}_{i}^{(m)})_{j_{i}, c} + \sum_{c_{1}=1}^{C} \sum_{c_{2}=1}^{O} \prod_{i=1}^{o(m)} (\mathbf{V}_{i}^{(m)})_{;, c_{1}}^{\top} (\mathbf{V}_{i}^{(m)})_{;, c_{2}}^{\top} \end{aligned}$$

Experiments

Datasets and evaluation tasks

- DBLP: a bibliographic network in the computer science domain.
 - Task 1: cluster 7,165 authors into 14 research areas. 1% authors as seeds;
 16,100 nodes and 30,239 edges.
 - Task 2: cluster 250 authors into 5 research groups. 5% authors as seeds;
 19,500 nodes and 108,500 edges.
 - Motifs used: AP4TPA, APPA, and all edge types (2-node motifs).
- YAGO: a knowledge graph.
 - Task: cluster 11,368 people to 10 countries. 1% people as seeds; 17,109 nodes and 70,251 edges.
 - Motifs used: $P^6O^{23}L$, $P^7O^{23}L$, $P^8O^{23}L$, $^2P^2W$, 3PW , and all edge types.

Schema of DBLP

1) wasBornIn	(9) isMarriedTo	1 wroteMusicFor
2 livesln	1 isConnectedTo	18 edited
3 diedln	1 hasChild	19 hasWonPrize
④ isCitizenOf	12 influences	20 holdsPosition
5 isPoliticianOf	(13) isAdvisedBy	② isPartOf
6 isAffiliatedTo	14 created	② hasCapital
7 graduatedFrom	15 directed	② isLocatedIn
8 playsFor	16 actedIn	(2) happenedIn

Schema of DBLP

Experiments

Baselines

- KNN: k-nearest neighbors.
- GNetMine [3]: A graph-based regularization framework for the transudative

No motifs

Collapse

pairwise

relation

motifs into

- classification problem in HINs. Only leverages edge-level information.
 - PathSelClus [4]: A probabilistic graphical model for HIN clustering by integrating meta-path selection with user-guidance.
- KNN+Motifs: Construct a new network for each motif with an edge for two nodes matched to a motif instance, apply KNN on new network, and linear combine results.
 - TGS [5]: A motif-based spectral clustering algorithm for HINs.

[5] Carranza, Aldo G., et al. "Higher-order Spectral Clustering for Heterogeneous Graphs." arXiv:1810.02959 (2018).

^[3] Ji, Ming, et al. "Graph regularized transductive classification on heterogeneous information networks." In ECMLPKDD, 2010.
[4] Sun, Yizhou, et al. "Integrating Meta-Path Selection with User-Guided Object Clustering in Heterogeneous Information Networks." In KDD, 2012.

Experiments

	Task	DBLP-group			DBLP-area			YAGO		
No motifs	Metric	Acc./Micro-F1	Macro-F1	NMI	Acc./Micro-F1	Macro-F1	NMI	Acc./Micro-F1	Macro-F1	NMI
	KNN	0.4249	0.2566	0.1254	0.4107	0.4167	0.2537	0.3268	0.0921	0.0810
	GNetMine[3]	0.5880	0.6122	0.3325	0.4847	0.4881	0.3469	0.3832	0.2879	0.1772
	$\operatorname{PathSelClus}[4]$	0.5622	0.5535	0.3246	0.4361	0.4520	0.3967	0.3856	0.3405	0.2864
Collapse	KNN+Motifs	0.4549	0.2769	0.1527	0.4811	0.4905	0.3296	0.3951	0.1885	0.1660
motifs into	TGS [5]	0.6609	0.6513	0.3958	0.4391	0.4365	0.2790	0.6058	0.3564	0.4406
relation	MoCHIN	0.7382	0.7387	0.5797	0.5318	0.5464	0.4396	0.6134	0.5563	0.4607

- MoCHIN uniformly outperformed all five baselines in all three tasks.
- MoCHIN prevailed by **comprehensively transcribing signals to tensors**.
 - KNN+Motifs and TGS also leverage signals from motifs.
 - TGS can generally outperform other baselines, but is still worse than MoCHIN.

[3] Ji, Ming, et al. "Graph regularized transductive classification on heterogeneous information networks." In ECMLPKDD, 2010.
 [4] Sun, Yizhou, et al. "Integrating Meta-Path Selection with User-Guided Object Clustering in Heterogeneous Information Networks." In KDD, 2012.
 [5] Carranza, Aldo G., et al. "Higher-order Spectral Clustering for Heterogeneous Graphs." arXiv:1810.02959 (2018).

Impact of Candidate Motif Choice

In the DBLP-group task, we optionally remove APPA and/or AP4TPA.

- AP4TPA is crucial for clustering <u>Eric Xing</u> correctly.
- Each node (e.g., "dirichlet") contributes to the semantic meaning of an motif instance comprehensive transcription via motifs is helpful.

Varied Seed Ratio

- For all methods, the performance increased as the seed ratio increased.
- MoCHIN outperformed most baselines, especially when seed ratio is small.
 - MoCHIN is particularly useful when users provide less guidance the most common scenario for user guided clustering – because it can better exploit subtle information from limited data.

Summary

- We identify the utility of motifs without collapsing it into pairwise interactions in userguided clustering.
- We propose the MoCHIN model that captures higher-order interaction via motif-based comprehensive transcription and develop an inference algorithm and speed-up methods for MoCHIN.
- In experiments, we demonstrate that the proposed approach can avoid losing the rich and subtle information captured by HIN motifs.
- Code available at https://github.com/NoSegfault/MoCHIN.