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Abstract

Background: As a promising tool for dissecting the genetic basis of common diseases, expression quantitative trait
loci (eQTL) study has attracted increasing research interest. Traditional eQTL methods focus on testing the
associations between individual single-nucleotide polymorphisms (SNPs) and gene expression traits. A major
drawback of this approach is that it cannot model the joint effect of a set of SNPs on a set of genes, which may
correspond to biological pathways.

Results: To alleviate this limitation, in this paper, we propose geQTL, a sparse regression method that can detect
both group-wise and individual associations between SNPs and expression traits. geQTL can also correct the effects of
potential confounders. Our method employs computationally efficient technique, thus it is able to fulfill large scale
studies. Moreover, our method can automatically infer the proper number of group-wise associations. We perform
extensive experiments on both simulated datasets and yeast datasets to demonstrate the effectiveness and efficiency
of the proposed method. The results show that geQTL can effectively detect both individual and group-wise signals
and outperforms the state-of-the-arts by a large margin.

Conclusions: This paper well illustrates that decoupling individual and group-wise associations for association
mapping is able to improve eQTL mapping accuracy, and inferring individual and group-wise associations.

Keywords: eQTL mapping, Group-wise association, Computation efficiency

Background
Expression quantitative trait loci (eQTL) mapping aims at
identifying single nucleotide polymorphisms (SNPs) that
influence the expression level of genes. It has been widely
applied to analyze the genetic basis of gene expression
and molecular mechanisms underlying complex traits
[1, 2]. In a typical eQTL study, the association between
each expression trait and each SNP is assessed separately
[3–5]. This approach does not consider the interactions
among SNPs and among genes. However, multiple SNPs
may interact with each other and jointly influence the
phenotypes [6]. This assumption will inevitably miss com-
plex cases where multiple genetic variants jointly affect
the co-expressions of multiple genes. It has been observed
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in biological experiments that the joint effect of multi-
ple SNPs to a phenotype may be non-additive [6], and
genes from the same biological pathway are usually co-
regulated [7] by the same genetic basis. The biological
process contains both individual effects and joint effects
between SNPs and genes [8]. A straightforward approach
to detect associations between sets of SNPs and a gene
expression level can be done using the standard gene set
enrichment analysis [9]. Wu et al. [10] further proposed
the variance componentmodels for SNP set testing. Braun
et al. employed aggregation-based approaches to cluster
SNPs [11]. In [12], Listgarten et al. further considered the
potential confounding factors.
However, there are two limitations for these approaches.

First, these methods typically only consider SNPs from
pre-defined pathways or gene ontology categories, which
are far from being complete. Second, these methods can
only detect the mapping of SNP set and a single gene
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expression level. To better elucidate the genetic basis of
gene expression, it is a crucial challenge to understand
how multiple modestly-associated SNPs interact to influ-
ence the a group of genes [6]. In this paper, we refer to this
kind of eQTLmapping to find associations between group
of SNPs and group of gene expression levels as the group-
wise eQTL mapping. An example is shown in Fig. 1. Note
that an ideal model should allow overlaps between SNP
sets and between gene sets, that is, a SNP or gene may
participate in multiple individual and group-wise asso-
ciations [6]. In literature, group-wise eQTL mapping has
attracted increasing research interest recently. For exam-
ple, Xu et al. [13] proposed a two-graph-guidedmulti-task
Lasso approach to infer group-wise eQTLmapping. How-
ever, it required the grouping information of both SNPs
and genes available as prior knowledge, which may not be
practical for many applications. Besides, it is not able to
correct the effects of confounding factors.
In this paper, we propose a novel method, geQTL, to

automatically detect individual and group-wise associa-
tions in eQTL studies. It uses a two-layer feature selection
strategy and adopts efficient optimization techniques,
which make it suitable for large scale studies. Moreover,
geQTL can automatically infer the optimal number of
group-wise associations. We perform extensive experi-
ments on both simulated datasets and yeast datasets to
demonstrate the effectiveness and efficiency of the pro-
posed method.

Methods
Preliminaries
Important notations used in this paper are listed in
Table 1. In this paper, for each sample, the data of SNPs
and genes are denoted by column vectors. Let x =
[ x1, x2, . . . , xK ]T denote the K SNPs. Here, xi ∈ {0, 1, 2}

Fig. 1 An illustration of individual and group-wise associations.
Ellipses represent the groups of SNPs and genes. Blue arrows
between SNPs and genes represent identified associations

Table 1 Notations

Symbols Description

K Number of SNPs

N Number of genes

H Number of samples

M Number of group-wise associations

x Random variables of K SNPs

z Random variables of N genes

y Latent variables to model group-wise associaiton

X ∈ R
K×H SNP matrix data

Z ∈ R
N×H Gene expression matrix data

A ∈ R
M×K Group-wise association coefficient matrix between x and y

B ∈ R
N×M Group-wise association coefficient matrix between y and z

C ∈ R
N×K Individual association coefficient matrix between x and y

α,β , γ , ρ Regularization parameters

R ∈ R
N×K Indicator matrix showing which elements in C can be nonzero

Bold term means vector or matrix while non-bold term means scalar

denotes a random variable corresponding to the i-th SNP
(For example, 0, 1, 2 may encode the homozygous major
allele, heterozygous allele, and homozygous minor allele,
respectively.). Let z =[ z1, z2, . . . , zN ]T denote the N genes
in the study. zj denotes a continuous random variable cor-
responding to the j-th gene expression. Let X = {xh|1 ≤
h ≤ H} ∈ R

K×H be the SNP matrix. We use Z = {zh|1 ≤
h ≤ H} ∈ R

N×H to denote the matrix of gene expression
levels. H denotes the number of samples in consideration.
The traditional linear regression model for association

mapping between x and z is

z = Wx + μ + ε, (1)

where z is a linear function of xwith coefficient matrixW,
μ is an N × 1 translation factor vector. And ε is the addi-
tive noise of Gaussian distribution with zero-mean and
variance γ I, where γ is a scalar. That is, ε ∼ N (0, γ I).
In association studies, sparsity is a reasonable assump-

tion because only a small fraction of genetic variants are
expected to be associated with a set of gene expression
traits. This can be modeled as a feature selection prob-
lem. For example, the standard Lasso [5] can be used in
association mapping, which applies �1 penalty on W for
sparsity.
If both X and Z are standardized, the objective function

of Lasso is formulated as

min
W

||Z − WX||2F + η||W||1, (2)

where || · ||F denotes the Frobenius norm, || · ||1 is the �1-
norm. η is the empirical parameter for the �1 penalty.W is
the parameter (also called weight) matrix parameterizing
the space of linear functions mapping from X to Z.
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Confounding factors, such as unobserved covariates,
experimental artifacts and unknown environmental per-
turbations, may mask real signals and lead to spurious
findings. LORS [14] uses a low-rank matrix L ∈ R

N×H to
account for the variations caused by hidden factors. The
objective function of LORS is

min
W,L

||Z − WX − L||2F + η||W||1 + ρ||L||∗, (3)

where ||·||∗ is the nuclear norm [14]. ρ is the regularization
parameter to control the rank of L. L is a low-rank matrix
assuming that there are only a small number of hidden
factors influencing the gene expression levels.
When we fix {W, we can optimize {L} by using singu-

lar value decomposition (SVD) according to the following
lemma.

Lemma 1. ([15]) Suppose that matrixO has rank r. The
solution to the optimization problem

min
S

1
2
||O − S||2F + λ||S||∗ (4)

is given by Ŝ = Hλ(O), where Hλ(O) = UDλVT

with Dλ = diag[ (d1 − λ)+, . . . , (dr − λ)+], UDVT is
the Singular Value Decomposition (SVD) of O, D =
diag[ d1, . . . , dr], and (di − λ)+ = max((di − λ), 0), (1 ≤
i ≤ r).

Thus, for fixedW, the formula for updating L is

L ← Hλ(Z − WX) (5)

Both Lasso and LORS do not consider the existence
of group-wise associations. Below, we will introduce the
proposed model to infer both group-wise and individual
associations for eQTL mapping.

geQTL
In geQTL, individual associations between SNPs and
genes are modeled by following the Lasso-based strategy.
Group-wise associations are inferred using a two-layer
feature selection method. Since multiple SNPs may have
joint effect on a group of genes, and such effect may be
accomplished through complex biological processes, we
introduce latent variables to bridge sets of SNPs and sets
of genes. Specifically, we assume that there exist latent
factors regulating the gene expression level, which serve
as bridges between the SNPs and the genes. The latent
variables are denoted by y =[ y1, y2, . . . , yM]T. Here, M
(M � min(K ,N)) is the total number of latent variables
representing group-wise associations. The relationship
between x and y can be represented as

y = Ax + ε1, (6)

where

ε1 ∼ N
(
0, σ 2

1 IM
)
.

A ∈ R
M×K denotes the matrix of coefficients between

x and y. σ 2
1 IM denotes the variances of the additive noise.

IM is an identity matrix. Here we drop the intercept terms
because the input data X and Z are normalized to zero
mean and unit variance as preprocessing.
Similarly, the relationship between y and z can be repre-

sented as

z = By + Cx + ε2, (7)

where

ε2 ∼ N
(
0, σ 2

2 IN
)
.

B ∈ R
N×M denotes the matrix of coefficients between

y and z, C ∈ R
N×K denotes the matrix of coefficients

between x and z to encode the individual associations.
Note that Eq. (7) decouples the associations between

SNPs and genes into two parts: one for individual asso-
ciations represented as Cx, and another for group-wise
associations represented as By. Next, we infer the group-
wise associations by a two-layer feature selection strategy.
We first remove the individual associations and denote

Z̃ = Z − CX. (8)

Thus Z̃ contains only group-wise effects. Next let

Y = AX. (9)

Thus Y represents a low-rank transformation of the
original SNP matrix. Each row of Y represents a group of
SNPs. From Eq. (7), we have the following multiple-input-
multiple-output (MIMO) linear system

Z̃ = BY + E, (10)

where E is a Gaussian white-noise term. In Eq. (9) and
(10), A and B should be sparse since a single gene is often
influenced by a small number of SNPs and vice versa [12].
Therefore, the overall objective function is

min
A,B,C,L

loss(A,B,C,L)

+ ρ||L||∗ + α||A||1 + β||B||1 + γ ||C||1,
(11)

where α,β , γ , ρ are the regularization parameters, and the
loss function is

loss(A,B,C,L) = ||Z − L − (BA + C)X||2F . (12)

Here, we choose different penalties for A,B,C because
the sparsities of different matrices are typically of different
scales.

Optimization
The optimization for L can be achieved by following a
similar approach as in [14]. To optimize A,B,C, many
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tools can be used to optimize the �1 penalized objec-
tive function, e.g., the Orthant-Wise Limited-memory
Quasi-Newton (OWL-QN) algorithm [16]. Due to space
limitation, we omit the details. In the next, we devise opti-
mization techniques that can dramatically improve the
computational efficiency of geQTL.

Boosting the computational efficiency
Given a large number of SNPs and gene expression traits,
scalability of the algorithm is a crucial issue. We pro-
pose two improved models, geQTL+ and geQTL-ridge,
which optimize the search for significant individual asso-
ciations, which is the main computational bottleneck of
the algorithm.

geQTL+
In a typical eQTL study, we usually haveM � min(K ,N).
Thus, the bottleneck of the algorithm is to optimize C.
Our strategy is to confine the space of C. The intuition
is that we only permit a small fraction of elements in C
to be nonzero. It has been shown that if Z and X are
standardized with zero mean and unit sum of squares,
then r = abs(ZXT) is equal to the gene-SNP correlations
(rgs = |cor(zg , xs)|) [17]. Since for many test statistics, e.g.,
t, F, R2, and LR, for the simple linear regression problem
can be expressed as functions of the sample correlation
rgs, e.g., R2 = r2, and t = r

√
n−2

1−r2 , we can find a threshold
according to the required p-value, such that test statis-
tics exceeding the threshold are significant at the required
significance level. The test statistics for every gene-SNP
pair in r are compared with the threshold, and only those
elements whose r are greater than the threshold are opti-
mized. We denote R ∈ R

N×K as the indicator matrix
indicating which elements in C can be nonzero (i.e., rgs >

threshold).

geQTL-ridge
When N and K are extremely large, optimizing C may
still be time-consuming, since it may take many iterations
to converge with the �1 constraint. Next, we introduce
geQTL-ridge, which further improves the time efficiency
with slight decrease in accuracy. The key idea is to use
ridge regression for individual associations so that we can
get a closed form solution for C. The objective function is
shown in the following.

min
A,B,C,L

loss(A,B,C,L)

+ ρ||L||∗ + α||A||1 + β||B||1 + γ ||C||22,
s.t.(C)i,j is nozero only if (R)i,j is 1.

(13)

Theorem 1. The solution of C in Eq. (13) is

ci ← diXTPi
(
PT
i XXTPi + γ IK

)−1
PT
i , (14)

where

ci = (C)i,:,di = (D)i,:,

D = Z − L − BAX,

and Pi is defined as in formula (19).

The proof of the Theorem 1 is in the following section.

Proof of Theorem 1
Proof. Recall that any ridge regression problem

min
a

||b − aQ||22 + ||a�||22, (15)

where a is a row vector and Q has linearly independent
rows, has the following solution

a = bQT(QQT + ��T)−1. (16)

Note that

loss(A,B,C,L) = ||D−CX||2F =
N∑
i=1

||di−ciX||22, (17)

where D = Z − L − BAX, ci = (C)i,: and di = (D)i,:.
We have

min
C

loss(A,B,C,L) =
N∑
i=1

min
ci

||di − ciX||22, (18)

Taking into account that (ci)j can be nonzero only if
(R)i,j is 1, we introduce Pi, where Pi has K rows and
li = ∑K

j=1(R)i,j columns. And

(Pi)s,t =
{
1, if (R)i,s is the t-th 1 in (R)i,:;
0, otherwise. (19)

Then ci = ciPiPT
i , ||di − ciX||22 + γ ||ci||22 = ||di −

(ciPi)
(
PT
i X

) ||22 + γ ||ciPi||22, and
min
ci

||di − ciX||22 + γ ||ci||22,
s.t.(ci)j is nozero only if (R)i,j is 1,

(20)

is solved by

ci = (ciPi)PT
i = diXTPi

(
PT
i XXTPi + γ IK

)−1
PT
i .

(21)

Therefore,

min
C

loss(A,B,C,L) + γ ||C||22,
s.t.(C)i,j is nozero only if (R)i,jis1,

is solved by C = (
cT1 , . . . , cTN

)T , which leads to the update
formula given in Eq. (14).
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Determining the number of hidden variables
In Eq. (12), we use BA + C to formulate the overall
associations between SNPs and expression traits.
Two group-wise associations will not share the same

group of SNPs (or genes), since otherwise these two
group-wise associations can be combined into one. There-
fore, every group-wise association should be unique and
irreplaceable. Hence, following two conditions should be
satisfied

• A has linearly independent rows. SinceM � K , this
condition is equivalent to that A has full rank;

• B has linearly independent columns. SinceM � N ,
this condition is equivalent to that B has full rank.

When these two conditions are met, we have

M = rank(A) = rank(B) = rank(BA). (22)

The last equality holds because both A and B have full
rank.
We have the following observation. The singular value

decomposition (SVD) of BA has the form

BA = U�VT,

where U and V are unitary (orthogonal in our case)
matrices, and� is a rectangular diagonal matrix with non-
negative real numbers on the diagonal, which corresponds
to singular values of BA. Since U and V are unitary and
hence have full rank, we have

rank(BA)= rank
(
U�VT

)
= rank(�)

= the number of nonzero singular values of BA.
(23)

We compute BA by minimizing Eq. (12), which gives

BA = (Z − L − CX)XT
(
XXT

)−1
. (24)

Combine (22), (23), and (24), we find

M = the number of nonzero singular values of

(Z − L − CX)XT
(
XXT

)−1
.

(25)

Due to the existence of noise, we should allow small
singular values to be considered as zero. Therefore, we
can draw a plot with singular values of (Z − L −
CX)XT (

XXT)−1 in descending order and setM to be k, if
the first k singular values are large and significantly greater
than the (k + 1)-th singular value.
Based on the discussion above, in order to find opti-

mal M, we can first use Lasso to infer the initial value
of C. Then, using Eq. 25, we can infer the optimal M at
this stage. After that, we can optimize new C, and calcu-
late new optimalM. We can repeat this procedure untilM
became stable or reach maximal number of iterations.

Results
In this section, we perform extensive experimental study
using both simulated and real eQTL datasets to evalu-
ate the performance of our methods. For comparison,
we select several state-of-the-art eQTL methods, includ-
ing two-graph guided multi-task lasso (MTLasso2G) [13],
FaST-LMM [12], SET-eQTL [18], LORS [14], Matrix
eQTL [17] and Lasso [5]. Note that we did not compare
with our previous work, GDL, in [19] because it needs to
incorporate many prior knowledge, that is not relevant to
this work. For all the methods, the tuning parameters are
learned using cross validation. The discussion of setting
proper number of group-wise associations M is included
in the Additional file 1. The shrinkage of the coefficients
is also presented in the Additional file 1.

Simulated data
We use a similar setup for simulation study to that in
[14]. First, 100 SNPs are randomly selected from the yeast
eQTL dataset [20]. This gives birth to the matrix X. 100
gene expression profiles are generated by Zj∗ = βj∗X +
j∗ + Ej∗ (1 ≤ j ≤ N), where Ej∗ ∼ N (0,φI) (φ = 0.1)
is used to simulate the Gaussian noise. To simulate the
effects of confounding factors, we use j∗, drawn from
N (0, τ�). In this paper, we set τ = 0.1. � is given by FFT.
Here, F ∈ R

H×J and Fij ∼ N (0, 1). J denotes hidden factor
number. In this paper, we set J to 10.
In the left most of Fig. 2, we illustrate β . Here, we set the

association strength to 1. Totally, there exist four group-
wise associations with different scales. The diagonal line
represents the individual signals in cis-regulation.
In Fig. 2, we report the associations inferred by

geQTL. Recall that group-wise associations can be
inferred from matrix A and B, and individual associ-
ations can be inferred from matrix C. It is obvious
that geQTL can detect both group-wise and individual
signals.
We use SNR =

√
Var(βX)
Var(+E)

to denote the signal-to-
noise ratio [14] in the eQTL datasets. Here, we fix J =
10, τ = 0.1. The SNR’s are controlled by using different
φ’s. Using 50 simulated datasets with different SNR’s, we
compare the proposed methods with the selected meth-
ods. Because FaST-LMM requires the input of genomic
locations information (e.g., chromosome, base pair, etc),
we will compare it on the real data set. The results are
averaged over 50 different simulated datasets. BA + C is
used to represent the association matrix in our method.
Figure 3 shows the ROC curve of TPR-FPR (true posi-
tive rate - false positive rate) for performance comparison.
Typically, we care more about the TPR when the FPR is
small because it is important to evaluate the performance
of model when controlling the maximum tolerated FPR.
Thus, in Fig. 3, the ROC of interest for eQTL are generally
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Fig. 2 Ground truth of matrix W and associations estimated by geQTL. The x-axis represents SNPs and y-axis represents traits. Normalized absolute
values of regression coefficients are used. Darker color implies stronger association. Number of group-wise associationsM = 4

shown in the range [0,0.1]. The corresponding areas under
the TPR-FPR curve are shown in Fig. 4.
It can be seen that geQTL and geQTL+ outperform all

alternative methods by a large margin since they consid-
ers both individual and group-wise associations. We also
observe that geQTL-ridge is not as good as geQTL and
geQTL+. This is because geQTL-ridge does not provide a
sparse solution for individual associations. MTLasso2G is
comparable to LORS. LORS can correct the effects of the
confounders, however, it is not able to detect group-wise
mappings. We also observe that by decoupling individ-
ual and group-wise associations, the proposed models
(geQTL, geQTL+, and geQTL-ridge) are more robust to
noise than other methods.

Yeast eQTL data
We also validated geQTL using the bench mark dataset–
yeast (Saccharomyces cerevisiae) eQTL dataset. The
dataset contains 112 yeast segregants generated from a
cross of two inbred strains [20]. Originally, It contains

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
PR

geQTL+

geQTL
geQTL−ridge
SET−eQTL
MTLasso2G
LORS
Lasso

Fig. 3 The ROC curve of FPR-TPR with different signal-to-noise ratios
(SNR = 0.13)

6229 gene epxressions and 2956 SNPs. SNPs with > 10 %
missing values in the remaining SNPs are imputed using
the function fill.geno in R/qtl [21]. The neighboring SNPs
with the same genotype profiles are combined, resulting
in 1027 genotype profiles. Remove gene expression traits
with missing values, we get 4474 expression profiles.

cis- and trans- analysis
We follow the standard cis-enrichment analysis that is
used in [22, 23] for evaluation. Moreover, we use the
trans-enrichment with a similar strategy [24]. Genes regu-
lated by transcription factors (obtained from http://www.
yeastract.com/download.php) are treated as trans-acting
signals.
In Table 2, we report the pairwise comparison using

cis- and trans- enrichment analysis. We do not list geQTL
separately from geQTL+, since geQTL+ is a faster ver-
sion of geQTL. In this table, the methods are sorted
(from top to bottom in the left column and from left to
right in the top row) in decreasing order of performance.
A p-value shows how significant a method on the left
column outperforms a method in the top row in terms
of cis and trans enrichments. We observe that geQTL+

Lasso LORS MTLasso2G SET−eQTL geQTL geQTL+geQTL−ridge
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C
 o

f 
FP

R
−

T
PR

 c
ur

ve

SNR=0.08 SNR=0.13 SNR=1.16

Fig. 4 The AUCs curve
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Table 2 Pairwise comparison of different models using cis-enrichment and trans-enrichment

FaST-LMM geQTL-ridge SET-eQTL MTLasso2G LORS Matrix eQTL Lasso

cis geQTL+ <0.0163 0.0124 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

FaST-LMM - 0.0247 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

geQTL-ridge - - <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

SET-eQTL - - - 0.0117 <0.0001 <0.0001 <0.0001

MTLasso2G - - - - <0.0001 <0.0001 <0.0001

LORS - - - - - <0.0001 0.0052

Matrix eQTL - - - - - - 0.0134

MTLasso2G FaST-LMM LORS SET-eQTL Matrix eQTL Lasso geQTL-ridge

trans geQTL+ 0.0042 0.0040 0.0033 0.0029 0.0027 0.0022 0.0001

MTLasso2G - 0.0212 0.0134 0.0049 0.0042 0.0038 0.0005

FaST-LMM - - 0.0233 0.0178 0.0125 0.0073 0.0006

LORS - - - 0.3110 0.1103 0.0151 0.0008

SET-eQTL - - - - 0.1223 0.0578 0.0016

Matrix eQTL - - - - - 0.0672 0.0021

Lasso - - - - - - 0.0025
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has significantly better cis-enrichment scores than the
other models. For trans-enrichment, geQTL+ is the best,
and MTLasso2G comes in second, outperforming FaST-
LMM, SET-eQTL, LORS, Matrix eQTL and Lasso. LORS
outperforms Matrix eQTL and Lasso for both cis- and
trans-enrichment. This is because LORS considers con-
founding factors while Matrix eQTL and Lasso does not.
In total, these methods each detected about 6000 associ-
ations according to non-zero W values. We estimate FDR
using 50 permutations as proposed in [14]. With FDR ≤
0.01, geQTL+ obtains about 4500 significant associations.

The plots of all identified significant associations for dif-
ferent methods are given in Fig. 5. Obviously, we can
see that C + B × A and C of geQTL+ report weaker
trans-regulatory bands while stronger cis-regulatory sig-
nals than other competitors.

Gene ontology enrichment analysis on detected group-wise
associations for yeast
We further evaluate the quality of detected groups of
genes by measuring the correlations between the detected
groups of genes and the GO (Gene Ontology) categories
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Fig. 5 Significant associations reported on yeast eQTL dataset
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[25]. Specifically, the GO enrichment test is calculated
by DAVID [26]. In this paper, gene sets reported by our
algorithm with calibrated p-values less than 0.01 are con-
sidered as significantly enriched.
Since SET-eQTL is the only previous approach capable

of detecting group-wise association mapping, we com-
pare the groups of genes detected by geQTL and those
by SET-eQTL. For SET-eQTL, 90 out of 150 gene sets
are significantly enriched. By contrast, 28 out of 30 gene
sets reported by geQTL are significantly enriched. This
well illustrates that the effectiveness of geQTL to infer
group-wise associations. The number of SNPs in each
group reported by geQTL and their genomic locations are
shown in Fig. 6. We can clearly observe that SNPs in the
same group are often physically close to each other. This is
reasonable because SNPs nearby usually jointly affect the
expression level of a set of genes that achieves a specific
cell function [8].

Reproducibility of eQTLs between studies
To further evaluate the identified associations, we inves-
tigate the consistency of calls between two independent
studies [27]. We examine the reproducibility based on the
following two criteria [14, 28, 29]:

• Reproducibility of detected SNP-gene associations:
Let L1 and L2 be the sets of SNP-gene associations
detected in the two yeast datasets, respectively. We
can rank the associations according to the weights (or
q-values for FaST-LMM). Let LT1 and LT2 be the top T
most significant associations from the two datasets.
The reproducibility is defined as |LT1

⋂
LT2 |

T .

• Reproducibility of trans regulatory hotspots: For each
SNP, we count the number of associated genes from
the detected SNP-gene associations. We use this
number as the regulatory degree of each SNP. For
FaST-LMM, SNP-Gene pairs with a q-value < 0.001
are considered significant associations. We also tried
different cutoffs for FaST-LMM (from 0.01 to 0.001),
the results are similar. SNPs with large regulatory
degrees are often referred to as hotspots. We sort
SNPs in descending order of their regulatory degrees.
We denote the sorted SNPs lists as S1 and S2 for the
two yeast datasets. Let ST1 and ST2 be the top T SNPs
in the sorted SNP lists. The trans calling consistency
of reported hotspots is denoted by |ST1

⋂
ST2 |

T .

In Fig. 7a, we show the consistency of the top 4500
associations between different studies. In Fig. 7b, we list
the reproducibility of trans regulatory hotspots reported
by different approaches. Overall, geQTL+ yielded results
with greater consistency all other methods. This well
illustrates the superiority of geQTL+.

Conclusions
In literature, much efforts have been done on eQTL
mapping. Traditional eQTL mapping approaches can
not detect the group-wise associations between sets
of SNPs and sets of genes. To achieve that, we pro-
pose a fast approach, geQTL, to detect both individ-
ual and group-wise associations for eQTL mapping.
geQTL can also correct the effects of potential con-
founders. We also introduce efficient algorithms to scale
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Fig. 7 Reproducibility of eQTLs between two independent yeast
eQTL datasets

up the computation so that the algorithms are able
to tackle large scale data sets. Additionally, the pro-
posed model provides an effective strategy to automati-
cally infer the proper number of group-wise associations.
We perform extensive experiments on both simulated
datasets and yeast datasets to demonstrate the effec-
tiveness and efficiency of the proposed method. Infer-
ring individual and group-wise associations also helps
us better explain the genetic basis of gene expression.
Due to scalability issue, our model simply assume ran-
dom errors between different genes are independent and
have the same variance. That is the reason why cur-
rent model only identified a small number of group-wise
associations. Our future work will further incorporate
the relationships between genes by integrating gene
co-expression network or protein-protein-interaction
network.
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