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Abstract

Background: Genome-wide expression quantitative trait loci (eQTL) studies have emerged as a powerful tool to
understand the genetic basis of gene expression and complex traits. The traditional eQTL methods focus on testing
the associations between individual single-nucleotide polymorphisms (SNPs) and gene expression traits. A major
drawback of this approach is that it cannot model the joint effect of a set of SNPs on a set of genes, which may
correspond to hidden biological pathways.

Results: We introduce a new approach to identify novel group-wise associations between sets of SNPs and sets of
genes. Such associations are captured by hidden variables connecting SNPs and genes. Our model is a linear-Gaussian
model and uses two types of hidden variables. One captures the set associations between SNPs and genes, and the
other captures confounders. We develop an efficient optimization procedure which makes this approach suitable for
large scale studies. Extensive experimental evaluations on both simulated and real datasets demonstrate that the
proposed methods can effectively capture both individual and group-wise signals that cannot be identified by the
state-of-the-art eQTL mapping methods.

Conclusions: Considering group-wise associations significantly improves the accuracy of eQTL mapping, and the
successful multi-layer regression model opens a new approach to understand howmultiple SNPs interact with each
other to jointly affect the expression level of a group of genes.
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Background
Expression quantitative trait loci (eQTL) mapping is the
process of identifying single nucleotide polymorphisms
(SNPs) that play important roles in the expression of
genes. It has been widely used to dissect genetic basis of
complex traits [1,2]. Traditionally, associations between
individual expression traits and SNPs are assessed sepa-
rately [3,4].
Since genes in the same biological pathway are often co-

regulated andmay share a common genetic basis [5,6], it is
crucial to understand how multiple modestly-associated
SNPs interact to influence the phenotypes [7]. To address
this issue, several approaches have been proposed to study
the joint effect of multiple SNPs by testing the associa-
tion between a set of SNPs and a gene expression trait. A
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straightforward approach is to follow the gene set enrich-
ment analysis (GESA) [8]. In [9], the authors propose vari-
ance component models for SNP set testing. Aggregation-
based approaches such as collapsing SNPs are investigated
in [10]. In [11], the authors take confounding factors into
consideration.
Despite their success, these methods have two common

limitations. First, they only study the association between
a set of SNPs and a single expression trait, thus over-
look the joint effect of a set of SNPs on the activities of a
set of genes, which may act and interact with each other
to achieve certain biological function. Second, the SNP
sets used in these methods are usually taken from known
pathways. However, the existing knowledge on biological
pathways is far from being complete. These methods can-
not identify unknown associations between SNP sets or
gene sets.
To address these limitations, in [12], a method is devel-

oped to identify cliques in a bipartite graph derived from
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the eQTL data. Cliques are used to model the hidden
correlations between SNP sets and gene sets. However,
this method needs the progeny strain information, which
is used as a bridge for modeling the eQTL association
graphs. In [13], the authors proposed a method to infer
associations between sets of SNPs and sets of genes.
However, this method does not consider the associations
between individual SNPs and genes. A two-graph-guided
multi-task Lasso approach was developed in [14]. This
method needs to calculate gene co-expression network
and SNP correlation network first. Errors and noises in
these two networks may introduce bias in the final results.
A graph regularized dual lasso approach considering the
factor of group-wise association was developed in [15].
This method, however, needs extra SNP-SNP interaction
network and PPI network data to penalize the regres-
sion model and it’s not able to infer novel group-wise
associations. Note that all these methods do not consider
confounding factors.
To better elucidate the genetic basis of gene expres-

sion and understand the underlying biology pathways, it
is highly desirable to develop methods that can automat-
ically infer associations between a group of SNPs and
a group of genes. We refer to the process of identify-
ing such associations as group-wise eQTL mapping. In
contrast, we refer to the process of identifying associa-
tions between individual SNPs and genes as individual
eQTL mapping. In this paper, we introduce a fast and
robust approach to identify novel associations between
sets of SNPs and sets of genes. Our model is a multi-layer
linear-Gaussianmodel and uses two different types of hid-
den variables: one capturing group-wise associations and
the other capturing confounding factors [11,16-20]. We
apply an �1-norm on the parameters [3,21], which yields a
sparse network with a large number of association weights
being zero [22].We develop an efficient optimization pro-
cedure that makes this approach suitable for large-scale
studiesa. Extensive experimental evaluations using both
simulated and real datasets demonstrate that the pro-
posed methods can effectively capture both group-wise
and individual associations and significantly outperforms
the state-of-the-art eQTL mapping methods.

Methods
Preliminaries
Throughout the paper, we assume that, for each sample,
the SNPs and genes are represented by column vectors.
Let x= [x1, x2, . . . , xK ]T represent theK SNPs in the study,
where xi ∈ {0, 1, 2} is a random variable corresponding
to the i-th SNPb. Let z = [z1, z2, . . . , zN]T represent the N
genes in the study, where zj is a continuous random vari-
able corresponding to the j-th gene. Table 1 summarizes
the main symbols used in this paper.

Table 1 Summary of notations

Symbols Description

K Number of SNPs

N Number of genes

D Number of samples

x The random variables of K SNPs

z The random variables of N genes

s The latent variables to model confounding
factors

y The latent variables to model group-wise
associaiton

X ∈ R
K×D The SNP matrix data

M Number of latent variables y

H Number of latent variables s

Z ∈ R
N×D The gene expression matrix data

A ∈ R
M×K The coefficient matrix between x and y

B ∈ R
N×M The coefficient matrix between y and z

C ∈ R
N×K The coefficient matrix between x and y

W ∈ R
N×H The coefficient matrix of confounding factors

μA ∈ R
M×1, μB ∈ R

N×1 The translation factor vectors

The traditional linear regression model for association
mapping between x and z is

z = βx + μ + ε, (1)

where z is a linear function of x with coefficient matrix
β . μ is an N × 1 translation factor vector. ε is the addi-
tive noise of Gaussian distribution with zero-mean and
variance ψI, where ψ is a scalar. That is, ε ∼ N(0,ψI).
The question now is how to define an appropriate objec-

tive function to decompose β which (1) can effectively
detect both individual and group-wise eQTL associations,
and (2) is efficient to compute so that it is suitable for
large-scale studies. In the next, we will propose a group-
wise eQTL detection method first, then improve it to cap-
ture both individual and group-wise associations. Then
we will discuss how to boost the computational efficiency.

Graphical model for group-wise eQTLmapping
To infer associations between SNP sets and gene sets
while taking into consideration confounding factors, we
propose a graphical model as shown in Figure 1. This
model is a two-layer linear Gaussian model. There are two
different types of hidden variables in themiddle layer. One
is used to capture the group-wise association between
SNP sets and gene sets. These latent variables are pre-
sented as y = [y1, y2, . . . , yM]T, whereM is the total num-
ber of latent variables bridging SNP sets and gene sets.
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Figure 1 Graphical model with two types of hidden variables,
shaded nodes denote observed random variables, and
unshaded nodes denote latent variables.

Each hidden variablemay represent a latent factor regulat-
ing a set of genes, and its associated genesmay correspond
to a set of genes in the same pathway or participating in
certain biological function. Another type of hidden vari-
able, s = [s1, s2, . . . , sH]T, is used to model confounding
factors. Note that this model allows a SNP or gene to
participate in multiple (SNP set, gene set) pairs. This is
reasonable because SNPs and genes may play different
roles in multiple biology pathways.

Incorporating individual effect
In the graphical model shown in Figure 1, we use a hid-
den variable y as a bridge between a SNP set and a gene
set to capture the group-wise effect. In addition, individ-
ual effects may exist as well [11]. To incorporate both
individual and group-wise effects, we extend the model in
Figure 1 and add one edge between x and z to capture indi-
vidual associations as shown in Figure 2.Wewill show that
this refinement will significantly improve the accuracy of
model and enhance its computational efficiency.

Objective function
Next, we give the derivation of the objective function for
the model in Figure 2.We assume that the two conditional
probabilities follow normal distributions:

y|x ∼ N
(
y|Ax + μA, σ 2

1 IM
)
, (2)

and

z|y, x ∼ N
(
z|By + Cx + Ws + μB, σ 2

2 IN
)
, (3)

where A ∈ R
M×K is the coefficient matrix between x and

y, B ∈ R
N×M is the coefficient matrix between y and

z, C ∈ R
N×K is the coefficient matrix between x and z

Figure 2 Refined graphical model to capture both individual and
group-wise associations, shaded nodes denote observed
random variables, and unshaded nodes denote latent variables.

to capture the individual associations, W ∈ R
N×H is the

coefficientmatrix of confounding factors.μA ∈ R
M×1 and

μB ∈ R
N×1 are the translation factor vectors, σ 2

1 IM and
σ 2
2 IN are the variances of the two conditional probabilities

respectively (σ1 and σ2 are constant scalars and IM and IN
are identity matrices).
Since the expression level of a gene is usually affected

by a small fraction of SNPs, we impose sparsity on A, B
and C. We assume that the entries of these matrices follow
Laplace distributions:

Ai,j ∼ Laplace(0, 1/λ),
Bi,j ∼ Laplace(0, 1/γ ), and
Ci,j ∼ Laplace(0, 1/α).
λ, γ and α will be used as parameters in the

objective function. The probability density function of
Laplace(μ, b) distribution is f (x|μ, b) = 1

2b exp
(
−|x−μ|

b

)
.

Thus, we have

y = Ax + μA + ε1, (4)

z = By + Cx + Ws + μB + ε2, (5)
where ε1 ∼ N

(
0, σ 2

1 IM
)
, ε2 ∼ N

(
0, σ 2

2 IN
)
. From Eq. (2)

we have

By|x ∼ N
(
BAx + BμA, σ 2

1BB
T
)
, (6)

Assuming that the confounding factors follow normal
distribution [11], s ∼ N(0, IH), then we have

Ws ∼ N(0,WWT). (7)

We substitute Eq. (6), (7) into Eq. (5), and get

z|x∼N
(
BAx+BμA+Cx+μB, σ 2

1BB
T + WWT+σ 2

2 IN
)
.
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From the formula above, we observe that the summand
BμA can also be integrated in μB. Thus to simplify the
model, we set μA = 0 and obtain

z|x ∼ N
(
BAx + Cx + μB, σ 2

1BB
T + WWT + σ 2

2 IN
)
.

To learn the parameters, we can use MLE (Maximize
Likelihood Estimation) or MAP (Maximum a posteri-
ori). Then, we get the likelihood function as p(z|x) =∏D

d=1 p(zd|xd). Maximizing the likelihood function is
identical to minimizing the negative log-likelihood. Here,
the negative log-likelihood (loss function) is

J =
D∑

d=1

Jd

= −1 · log
D∏

d=1

p(zd|xd)

=
D∑

d=1

(−1) · log p(zd|xd)

= D · N
2

log(2π) + D
2
log |�|

+ 1
2

D∑
d=1

[(
zd − μd

)T
�−1 (

zd − μd
)]

,

(8)

where

μd = BAxd + Cxd + μB,

� = σ 2
1BB

T + WWT + σ 2
2 IN .

Moreover, taking into account the prior distributions of
A, B and C, we have

p(zd,A,B,C|xd,W, σ1, σ2)

= exp(−Jd) · λ

2
∏
i,j

exp(−λ|Ai,j|)

· γ

2
∏
i,j

exp(−γ |Bi,j|) · α

2
∏
i,j

exp(−α|Ci,j|).
(9)

Thus, we have the �1-regularized objective function

max
A,B,C,W,σ1,σ2

log
D∏

d=1
p(zd,A,B,C|xd,W, σ1, σ2),

which is identical to

min
A,B,C,W,σ1,σ2

[J + D · (λ||A||1 + γ ||B||1 + α||C||1)] , (10)

where || · ||1 is the �1-norm. λ, γ and α are the precision of
the prior Laplace distributions of A, B and C respectively.
They serve as the regularization parameters and can be
determined by cross or holdout validation.
The explicit expression of μB can be derived as follows.

When A, B and C are fixed, we have J = D·N
2 log(2π) +

D
2 log |�| + 1

2
∑D

d=1 [(zd − BAxd −Cxd − μB)T�−1(zd −

BAxd − Cxd − μB)]. When D = 1, this is a classic
maximum likelihood estimatation problem, and we have
μB = zd − BAxd − Cxd. When D > 1, leveraging the
fact that �−1 is symmetric, we convert the problem into a
least-square problem, which leads to

μB = 1
D

D∑
d=1

(zd − BAxd − Cxd).

Substituting it into Eq. (8), we have

J = D · N
2

log(2π) + D
2
log |�| + 1

2
∑D

d=1
{[(zd − z̄)

− (BA + C) (xd − x̄)]T �−1 [(zd − z̄)
− (BA + C) (xd − x̄)]} ,

(11)

where

x̄ = 1
D

D∑
d=1

xd, z̄ = 1
D

D∑
d=1

zd.

Optimization
To optimize the objective function, there are many off-
the-shelf �1-penalized optimization tools. We use the
Orthant-Wise Limited-memory Quasi-Newton (OWL-
QN) algorithm described in [23]. The OWL-QN algo-
rithmminimizes functions of the form

f (w) = loss(w) + c||w||1,
where loss(·) is an arbitrary differentiable loss function,
and ||w||1 is the �1-norm of the parameter vector. It is
based on the L-BFGS Quasi-Newton algorithm [24], with
modifications to deal with the fact that the �1-norm is not
differentiable. The algorithm is proven to converge to a
local optimum of the parameter vector. The algorithm is
very fast, and capable of scaling efficiently to problems
with millions of parameters. Thus it is a good option for
our problem where the parameter space is large when
dealing with large scale eQTL data.
In addition to the loss function and penalized param-

eters, the OWL-QN algorithm also requires the gradient
of the loss function, which (without detailed derivation) is
given in the Additional file 1.

Computational speedup
In this section, we discuss how to speedup the optimiza-
tion process for the proposed model. In the previous
section, we have shown that A, B, C,W, σ1, and σ2 are the
parameters to be solved. Here, we first derive an updating
scheme for σ2 when other parameters are fixed by fol-
lowing a similar technique as discussed in [25]. For other
parameters, we develop an efficient method for calculat-
ing the inverse of the covariance matrix which is the main
bottleneck of the optimization process.
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Updating σ2
When all other parameters are fixed, using spectral
decomposition on

(
σ 2
1BB

T + WWT)
, we have

� =
(
σ 2
1BB

T + WWT
)

+ σ 2
2 IN

= [U,V] diag
(
λ1 + σ 2

2 , . . . , λN−q + σ 2
2 , 0, . . . , 0

)
[U,V]T

= Udiag
(
λ1 + σ 2

2 , . . . ,λN−q + σ 2
2
)
UT,

(12)

where U is an N × (N − q) eigenvector matrix cor-
responding to the nonzero eigenvalues; V is an N × q
eigenvector matrix corresponding to the zero eigenvalues.
A reasonable solution should have no zero eigenvalues
in �, otherwise the loss function would be infinitely big.
Therefore, q = 0.
Thus

�−1 = Udiag

(
1

λ1 + σ 2
2
, . . . ,

1
λN + σ 2

2

)
UT.

LetUT(zd−BAxd−Cxd−μB) = :[ ηd,1, ηd,2, . . . , ηd,N ]T.
Then solving σ2 is equivalent to minimizing

l
(
σ 2
2
) = D · N

2
log(2π) + D

2

N∑
s=1

log
(
λs + σ 2

2
)

+ 1
2

D∑
d=1

N∑
s=1

η2d,s

λs + σ 2
2
,

(13)

whose derivative is

l′
(
σ 2
2
) = D

2

N∑
s=1

1
λs + σ 2

2
− 1

2

D∑
d=1

N∑
s=1

η2d,s(
λs + σ 2

2
)2 .

This is a 1-dimensional optimization problem that can
be solved very efficiently.

Efficiently inverting the covariancematrix
From objective function Eq. 11 and the gradient of the
parameters (given in the Additional file 1), the time com-
plexity of each iteration in the optimization procedure is
O(DN2M +DN2H +DN3 +DNMK). SinceM � N and
H � N , the third term of the time complexity (O(DN3))
is the bottleneck of the overall performance. This is for
computing the inverse of the covariance matrix

� = σ 2
1BB

T + WWT + σ 2
2 IN ,

which is much more time-consuming than other matrix
multiplication operations.
We devise an acceleration strategy that calculates �−1

using formula (14) in the following theorem. The com-
plexity of computing the inverse reduces toO(M3 + H3).

Theorem 1. Given B ∈ R
N×M,W ∈ R

N×H, and

� = σ 2
2 IN + σ 2

1BB
T + WWT.

Then


−1 = T − TWS−1WTT, (14)

β (true)
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Figure 3 Ground truth of matrix β and linkage weights estimated by Model 2 on simulated data. The x-axis represents traits and y-axis
represents SNPs. Normalized absolute values of regression coefficients are used. Darker color implies stronger association.
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Figure 4 Association weights estimated by Model 1 andModel 2 on simulated data with differentM’s. The x-axis represents traits and y-axis
represents SNPs.
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Figure 5 The ROC curve of FPR-TPR on simulated data. The black solid line denotes what random guessing would have achieved.
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Figure 6 The areas under the precision-recall/FPR-TPR curve (AUCs) of different methods with different signal-to-noise ratios (defined as
SNR) on simulated data.
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Figure 7Model 2 shrinkage of coefficients for B×A and C
respectively. Each curve represents a coefficient as a function of the
scaled parameter s = |B×A|

max |B×A| or s = |C|
max |C| .

where

S = IH + WTTW, (15)

T = σ−2
2

(
IN − σ 2

1B
(
σ 2
2 IM + σ 2

1B
TB

)−1
BT

)
. (16)

The proof is provided in the Additional file 1.

Results and discussion
We apply our method to both simulation datasets and
yeast eQTL datasets [26] to evaluate its performance. For
simplicity, we refer to the proposed model that only con-
siders group-wise associations as Model 1, and the model
that considers both individual and group-wise associa-
tions asModel 2. For comparision, we select several recent
eQTL methods, including LORS [27], MTLasso2G [14],
FaST-LMM [11], SET-eQTL [13] and Lasso [3]. The tun-
ing parameters in the selected methods are learned using
cross-validation. All experiments are performed on a PC
with 2.20 GHz Intel i7 eight-core CPU and 8 GB memory.

Simulation study
We first evaluate whether Model 2 can identify both indi-
vidual and group-wise associations. We adopt a similar
setup for simulation study to that in [27,28] and gener-
ate synthetic datasets as follows. 100 SNPs are randomly
selected from the yeast eQTL dataset [26].N gene expres-
sion profiles are generated by Zj∗ = βj∗X+�j∗ +Ej∗ (1 ≤
j ≤ N), where Ej∗ ∼ N(0, ηI) (η = 0.1) denotes Gaussian
noise. �j∗ is used to model non-genetic effects, which is
drawn from N(0, ρ�), where ρ = 0.1. � is generated by
FFT, where F ∈ R

D×U and Fij ∼ N(0, 1). U is the number
of hidden factors and is set to 10 by default. The associa-
tion matrix β is shown in the top-left plot in Figure 3. The
association strength is 1 for all selected SNPs. There are
in total four group-wise associations of different scales.
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Figure 8 Running time performance on simulated data when varying N andM.When varying N, we fix M, and when varyingM, we fix N.

The associations on the diagonal are used to represent
individual association signals in cis-regulation.
The remaining three plots in Figure 3 show associations

estimated by Model 2. From the figure, we can see that
Model 2 well captures both individual and group-wise sig-
nals. For comparison, Figure 4 visualizes the association
weights estimated by Model 1 and Model 2 when vary-
ing the number of hidden variables (M). We observe that
for Model 1, when M = 20, most of the individual asso-
ciation signals on the diagonal are not captured. As M
increases, more individual association signals are detected
by Model 1. In contrast, Model 2 recovers both individual
and group-wise linkage signals with smallM.
Next, we generate 50 simulated datasets with differ-

ent signal-to-noise ratios (defined as SNR =
√

Var(βX)
Var(�+E)

)

in the eQTL datasets [27] to compare the performance
of the selected methods. Here, we fix H = 10,ρ = 0.1,
and use different η’s to control SNR. For each setting, we
report the averaged result from the 50 datasets. For the
proposed methods, we use BA + C as the overall associa-
tions. Since FaST-LMM needs extra information (e.g., the
genetic similarities between individuals) and uses PLINK
format, we do not list it here and will compare it on the
real data set.
Figure 5 shows the ROC curves of TPR-FPR for perfor-

mance comparison. The corresponding areas under the
TPR-FPR curve and the areas under the precision-recall
curve (AUCs) [14] are shown in Figure 6. It can be seen
that Model 2 outperforms all alternative methods by a
large margin. Model 2 outperforms Model 1 because it
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Figure 10 Significant associations discovered by different methods in yeast. The top 4500 associations ranked by abs(weight) are shown in
each plot unless otherwise noted. The x-axis represents SNPs and y-axis represents genes (traits). Both SNPs and genes are arranged by their locations
in the genome. C+B×A and C of Model 2 have stronger cis-regulatory signals and weaker trans-regulatory bands than Model 1, LORS, and Lasso. C
of Model 2 has weaker trans-regulatory bands than others. LORS has weaker trans-regulatory bands than Lasso since it considers confounding factors.

considers both group-wise and individual associations.
Model 1 outperforms SET-eQTL because it considers
confounding factors that is not considered by SET-eQTL.
SET-eQTL considers all associations as group-wise, thus
it may miss some individual associations. MTLasso2G
is comparable to LORS because MTLasso2G considers
the group-wise associations while neglecting confounding
factors. LORS considers the confounding factors, but does
not distinguish individual and group-wise associations.

LORS outperforms Lasso since confounding factors are
not considered in Lasso.

Shrinkage of C and B× A
As discussed in the Methods, the group-wise associa-
tions are encoded in B × A and individual associations are
encoded in C. To enforce sparsity on A, B and C, we use
Laplace prior on the elements of these matrices. Thus, it is
interesting to study the the overall shrinkage of B×A and C.
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Table 2 Pairwise comparison of differentmodels using cis-enrichment and trans-enrichment in yeast

cis-enrichment

FaST-LMM C ofModel 2 MTLasso2G B× A of Model 1 LORS Lasso

C + B × A of Model 2 0.4351 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

FaST-LMM - 0.2351 < 0.0001 < 0.0001 < 0.0001 < 0.0001

C of Model 2 - - 0.0221 < 0.0001 < 0.0001 < 0.0001

MTLasso2G - - - < 0.0001 < 0.0001 < 0.0001

B × A of Model 1 - - - - < 0.0001 < 0.0001

LORS - - - - - 0.0052

trans-enrichment

B × A of Model 2 FaST-LMM MTLasso2G LORS B × A of Model 1 Lasso

C + B × A of Model 2 0.4245 0.3123 0.0034 0.0029 0.0027 0.0023

B × A of Model 2 - 0.3213 0.0132 0.0031 0.0028 0.0026

FaST-LMM - - 0.0148 0.0033 0.0031 0.0029

MTLasso2G - - - 0.0038 0.0037 0.0032

LORS - - - - 0.0974 0.0151

B × A of Model 1 - - - - - 0.0564

A p-value shows how significant a method on the left column outperforms a method in the top row in terms of cis-enrichment or trans-enrichment.
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Figure 11 Consistency of detected eQTL hotspots between two
independent yeast eQTL datasets.

We randomly generate 7 predictors ({x1, x2 , . . . , x7}) and 1
response (z) with sample size 100. xi ∼ N(0, 0.6 · I)(i ∈[1, 7] ).
The response vector was generated with the formula: z =
5·(x1+x2)−3·(x3+x4)+2·x5+ε̃ and ε̃ ∈ N(0, I). Thus, there are
two groups of predictors ({x1, x2} and {x3, x4}) and one indi-
vidual predictor x5. Figure 7 shows the Model 2 shrinkage
of coefficients for B×A and C respectively. Each curve rep-
resents a coefficient as a function of the scaled parameter
s = |B×A|

max |B×A| or s = |C|
max |C| . We can see that the two groups of

predictors can be identified by B×A as themost important
variables, and the individual predictor can be identified by C.

Computational efficiency evaluation
Scalability is an important issue for eQTL study. To evalu-
ate the techniques for speeding up the computational effi-
ciency, we compare the running time with/without these
techniques. Figure 8 shows the running time when varying
the number of hidden variables (M) and number of traits
(N). The results are consistent with the theoretical analy-
sis in Methods part that the time complexity is reduced to
O(M3 + H3) from O(N3) when using the improved method
for inverting the covariance matrix. We also observe that
Model 2 uses slightly more time thanModel 1, since it has
more parameters to optimize. However, to get similar per-
formance, Model 1 needs a significantly larger number of
hidden variables M. As shown in Figure 8(a), a larger M
results in a longer running time. In some cases, Model 2
is actually faster than Model 1. As an example, to obtain
the same performance (i.e., AUC), Model 1 needs 60 hid-
den variables (M), whileModel 2 only needsM = 20. In this
case, from Figure 8(a), we can observe that Model 2 needs
less time than Model 1 to obtain the same results.

Yeast eQTL study
We apply the proposed methods to a yeast (Saccha-
romyces cerevisiae) eQTL dataset of 112 yeast segregants

generated from a cross of two inbred strains [26]. The
dataset originally includes expression profiles of 6229
gene expression traits and genotype profiles of 2956 SNP
markers. After removing SNPs with more than 10% miss-
ing values and merging consecutive SNPS with high
linkage disequilibrium, we obtain 1017 SNPs with dis-
tinct genotypes [29]. In total, 4474 expression profiles are
selected after removing the ones with missing values. It
takes about 5 hours for Model 1, and 3 hours for Model
1 to run to completion. The regularization parameters are
set by grid search in {0.1, 1, 10, 50, 100, 500, 1000, 2000}.
Specifically, grid search trains the model with each com-
binations of three regularization parameters in the grid
and evaluates their performance (by measuring out-of-
sample loss function value) for a two-fold cross validation.
Finally, the grid search algorithm outputs the settings that
achieved the smallest loss in the validation procedure.
We use hold-out validation to find the optimal number

of hidden variables M and H for each model. Specifically,
we partition the samples into 2 subsets of equal size. We
use one subset as training data and test the learned model
using the other subset of samples. By measuring out-of-
sample predictions, we can find optimal combination ofM
and H that avoids over-fitting. For each combination, opti-
mal values for regularization parameters were determined
with two-fold cross validation. The loss function values
for different {M, H} combinations of Model2 are shown in
Figure 9. We find that M = 30 and H = 10 for Model 2
delivers the best overall performance. Similarly, we find
that the optimal M and H values for Model 1 are 150 and
10 respectively.
The significant associations given by Model 1, Model 2,

LORS, MTLasso2G and Lasso are shown in Figure 10. For
Model 2, we can clearly see that the estimated matrices
C and B × A well capture the non group-wise and group-
wise signals respectively. C + B × A and C of Model 2 have
stronger cis-regulatory signals and weaker trans-regulatory
bands than that ofModel 1, LORS, and Lasso.C ofModel 2
has the weakest trans-regulatory bands. LORS has weaker
trans-regulatory bands than Lasso since it considers con-
founding factors. With more hidden variables (larger M),
Model 1 obtains stronger cis-regulatory signals.

cis- and trans-enrichment analysis
In total, the proposed two methods detect about 6000
associations with non-zero weight values (B×A for Model
1 and C + B × A for Model 2). We estimate their FDR
values by following the method proposed in [27]. With
FDR ≤ 0.01, both models obtain about 4500 associations.
The visualization of significant associations detected by
different methods is provided in Additional file 1.
We apply cis- and trans-enrichment analysis on the dis-

covered associations. In particular, we follow the standard
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Table 3 Summary of all detectedgroups of genes fromModel 2 on yeast data
aGroup ID bSNPs set size cgene set size dGO category

1 63 294 oxidation-reduction process∗

2 78 153 thiamine biosynthetic process∗

3 94 871 rRNA processing∗∗∗

4 64 204 nucleosome assembly∗∗

5 70 288 ATP synthesis coupled proton transport∗∗∗

6 43 151 branched chain family amino acid biosynthetic...∗∗

7 76 479 mitochondrial translation∗∗∗

8 47 349 transmembrane transport∗∗

9 64 253 cytoplasmic translation∗∗∗

10 72 415 response to stress∗∗

11 64 225 mitochondrial translation∗

12 62 301 oxidation-reduction process∗∗

13 83 661 oxidation-reduction process∗

14 69 326 cytoplasmic translation∗

15 71 216 oxidation-reduction process∗

16 66 364 methionine metabolic process∗

17 74 243 cellular amino acid biosynthetic process∗∗∗

18 63 224 transmembrane transport∗∗

19 23 50 de novo’ pyrimidine base biosynthetic process∗

20 66 205 cellular amino acid biosynthetic process∗∗∗

21 81 372 oxidation-reduction process∗∗

22 33 126 oxidation-reduction process∗∗∗

23 81 288 pheromone-dependent signal transduction...∗∗

24 53 190 pheromone-dependent signal transduction...∗∗

25 91 572 oxidation-reduction process∗∗∗

26 66 46 cellular cell wall organization∗

27 111 1091 translation∗∗∗

28 89 362 cellular amino acid biosynthetic process∗∗

29 62 217 transmembrane transport∗∗

30 71 151 cellular aldehyde metabolic process∗∗

aGroup ID corresponding to Figure 12. bNumber of SNPs in the group. cNumber of genes in the group. dThe most significant GO category enriched in the associated
gene set. The enrichment test was performed using DAVID [29]. The gene function is defined by GO category. Adjusted p-values are reported by using permutation
test. Adjusted p-values are indicated by ∗, where ∗10−2 ∼ 10−3 , ∗∗10−3 ∼ 10−5 , ∗∗∗10−5 ∼ 10−10 .

cis-enrichment analysis [30,31] to compare the perfor-
mance of two competing models. The intuition behind
cis-enrichment analysis is that more cis-acting SNPs are
expected than trans-acting SNPs. A two-step procedure
is used in the cis-enrichment analysis [30]: (1) for each
model, we apply a one-tailed Mann-Whitney test on each
SNP to test the null hypothesis that the model ranks its
cis hypotheses (we use <500 bp for yeast) no better than
its trans hypotheses, (2) for each pair of models compared,
we perform a two-tailed paired Wilcoxon sign-rank test
on the p-values obtained from the previous step. The null
hypothesis is that the median difference of the p-values
in the Mann-Whitney test for each SNP is zero. The

trans-enrichment is implemented using a similar strat-
egy as in [32], in which genes regulated by transcription
factorsc are used as trans-acting signals.
The results of pairwise comparison of selected models

are shown in Table 2. A p-value shows how significant a
method on the left column outperforms a method in the
top row in terms of cis-enrichment or trans-enrichment.
We observe that the proposed Model 2 has significantly
better cis-enrichment scores than other methods. For
trans-enrichment, Model 2 is the best, and FaST-LMM
comes in second. This is because both Model 2 and
FaST-LMM consider confounding factors (FaST-LMM
considers confounders from population structure) and
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Table 4 Summary of the top 15 detectedhotspots by LORS

chr start end size GO category adjusted p-value

XII 659357 662627 36 sterol biosynthetic process 7.18E-05

XII 1056097 1056097 31 telomere maintenance via recombination 4.72E-08

XV 154177 154309 29 amino acid catabolic process to alcohol via Ehrlich pathway 0.052947053

III 201166 201167 23 regulation of mating-type specific transcription, DNA-dependent 0.001998002

XV 143597 150651 23 response to stress 0.672327672

III 81832 92391 22 pheromone-dependent signal transduction involved in conjugation with cellular fusion 1.76E-03

VIII 111682 111690 22 cell adhesion 0.002947528

IX 139462 139512 21 cellular response to nitrogen starvation 0.00106592

XV 170945 180961 20 cell adhesion 0.053946054

III 105042 105042 19 branched chain family amino acid biosynthetic process 5.51357E-08

XIII 46070 46084 19 cell adhesion 0.050949051

XV 563943 563943 19 transport 0.003996004

I 41483 42639 18 cellular response to nitrogen starvation 0.016983017

III 175799 177850 18 pheromone-dependent signal transduction involved in conjugation with cellular fusion 7.47E-03

I 36900 37068 17 signal transduction 0.547452547

Bold groups are not significantly enriched.
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(a)

(b)
Figure 12 Number of SNPs and genes in each group-wise association detected by Model 1 andModel 2 in yeast. x-axis is the associated
SNP-Gene Group ID, y-axis is the number of SNPs or genes in the group. The red line denotes the number of SNPs in the group and the bar denotes
number of genes in the group, among which the green bar indicates that the group of genes is significantly enriched by some GO categrory, while
the red bar indicates that the groups of genes is not significantly enriched.

joint effects of SNPs, but only Model 2 considers grouping
of genes. Model 1 has poor performance because a larger
M may be needed for Model 1 to capture those individual
associations.

Reproducibility of trans regulatory hotspots between studies
We also evaluate the consistency of calling eQTL hotspots
between two independent glucose yeast datasets [33]. The
glucose environment from Smith et al. [33] shares a com-
mon set of segregants. It includes 5493 probes measured
in 109 segregates. Since our algorithm aims at finding
group-wise associations, we focus on the consistency of
regulatory hotspots.
We examine the reproducibility of trans regulatory

hotspots based on the following criteria [18,19,27]. For
each SNP, we count the number of associated genes from
the detected SNP-gene associations. We use this number
as the regulatory degree of each SNP. For Model2, LORS,
and Lasso, all SNP-Gene pairs with non-zero association

weights are defined as associations. Note that Model2
uses BA + C as the overall associations. For FaST-LMM,
SNP-Gene pairs with a q-value < 0.001 are defined as
associations. Note that we also tried different cutoffs for
FaST-LMM (from 0.01 to 0.001), the results are similar.
SNPs with large regulatory degrees are often referred to
as hotspots. We sort SNPs by the extent of trans regulation
(regulatory degrees) in a descending order. We denote the
sorted SNPs lists as S1 and S2 for the two yeast datasets. Let
ST1 and ST2 be the top T SNPs in the sorted SNP lists. The
trans calling consistency of detected hotspots is defined
as |ST1

⋂
ST2 |

T .
Figure 11 compares the reproducibility of trans regula-

tory hotspots given by different studies. It can be seen
that the proposed Model2 gives much higher consistency
than any other competitors do. In particular, the consis-
tency of trans hotspots suggests the superiority of Model2
in identifying hotspots that are likely to have a true genetic
underpinning.
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Gene ontology enrichment analysis
As discussed in Methods, hidden variables y in the middle
layer may model the joint effect of SNPs that have influ-
ence on a group of genes. To better understand the learned
model, we look for correlations between a set of genes
associated with a hidden variable and GO categories (Bio-
logical Process Ontology) [34]. In particular, for each gene
set G, we identify the GO category whose set of genes is
most correlated with G. We measure the correlation by a
p-value determined by the Fisher’s exact test. Since mul-
tiple gene sets G need to be examined, the raw p-values
need to be calibrated because of the multiple testing prob-
lem [35]. To compute the calibrated p-values for each gene
set G, we perform a randomization test, wherein we apply
the same test to randomly created gene sets that have
the same number of genes as G. Specifically, the enrich-
ment test is performed using DAVID [29]. And gene sets
with calibrated p-values less than 0.01 are considered as
significantly enriched.
The results from Model 2 are reported in Table 3. Each

row of Table 3 represents the gene set associated with a
hidden variable. All of these detected gene sets are signifi-
cantly enriched in certain GO categories. The significantly
enriched gene sets of Model 1 are included in Additional
file 1.
For comparison, we visualize the number of SNPs and

genes in each group-wise association in Figure 12. We
observe that 90 out of 150 gene sets reported by Model 1
are significantly enriched, and all 30 gene sets reported by
Model 2 are significantly enriched (GOA results of Model
1 are reported in Additional file 2). This indicates that
Model 2 is able to detect group-wise linkages more pre-
cisely than Model 1. We also study the hotspots detected
by LORS, which affect > 10 gene traits [28]. Specifically, we
delve into the top 15 hotspots detected by LORS (rank-
ing by number of associated genes for each SNP), as listed
in Table 4. We can see that only 9 out of 15 top ranked
hotspots are significantly enriched.

Conclusion
A crucial challenge in eQTL study is to understand how
multiple SNPs interact with each other to jointly affect
the expression level of genes. In this paper, we propose
a sparse graphical model to identify novel group-wise
eQTL associations. The proposed model can also take
into account potential confounding factors and individ-
ual associations. �1-regularization is applied to learn the
sparse structure of the graphical model. We also introduce
computational techniques to make this approach suitable
for large scale studies. Extensive experimental evalua-
tions using both simulated and real datasets demonstrate
that the proposed methods can effectively capture both
individual and group-wise signals and significantly out-
perform the state-of-the-art eQTL mapping methods.

Endnotes
aThe software is implemented in both C++ and matlab,

and publicly available at http://www.cs.unc.edu/~
weicheng/Group-Wise-EQTL.zip.

bFor example, 0, 1, 2 may encode the homozygous
major allele, heterozygous allele, and homozygous minor
allele, respectively.

chttp://www.yeastract.com/download.php.
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